yifli
- 68
- 0
I have difficulty understanding the following Theorem
If U is open in ℝ^2, F: U \rightarrow ℝ is a differentiable function with Lipschitz derivative, and X_c=\{x\in U|F(x)=c\}, then X_c is a smooth curve if [\operatorname{D}F(\textbf{a})] is onto for \textbf{a}\in X_c; i.e., if \big[ \operatorname{D}F\bigl( \begin{smallmatrix}a \\ b\end{smallmatrix}\bigr)\big]≠0 \mbox{ for all } \textbf{a}=\bigl( \begin{smallmatrix}a \\ b \end{smallmatrix}\bigr)\in X_c
I don't understand why the differential of F at a being onto is equivalent to saying the differential is not zero. Can someone explain? Thanks
If U is open in ℝ^2, F: U \rightarrow ℝ is a differentiable function with Lipschitz derivative, and X_c=\{x\in U|F(x)=c\}, then X_c is a smooth curve if [\operatorname{D}F(\textbf{a})] is onto for \textbf{a}\in X_c; i.e., if \big[ \operatorname{D}F\bigl( \begin{smallmatrix}a \\ b\end{smallmatrix}\bigr)\big]≠0 \mbox{ for all } \textbf{a}=\bigl( \begin{smallmatrix}a \\ b \end{smallmatrix}\bigr)\in X_c
I don't understand why the differential of F at a being onto is equivalent to saying the differential is not zero. Can someone explain? Thanks