Why Is the Electric Field Zero Between Uniformly Charged Parallel Plates?

In summary: Furthermore, the Gaussian surface, is not a plane. Gauss' Law tells you about the flux through a closed surface, and a plane is not a closed surface. Look up "Gaussian pillbox".Yes, I was looking at a Gaussian pillbox video. Essentially, what you are saying is that the Gaussian surface is not a closed surface, which is correct. However, Gauss' Law still applies to the field inside of the pillbox, just as it does outside of it.
  • #1
LonghornDude8
16
0
Electric Fields/Gauss's Law: Parallel insulating plates

Here's the question: Two large, parallel, insulating plates are charged uniformly with the same charge density σ. What is the magnitude of the resultant electric field E ?
The correct answer: zero between the plates, σ/E0 outside
My question: Why is the field between them zero? I understand that there is at least a point in between them where the field is zero, but why is the whole field zero. As you get closer to one plate the force from that plate increases (whether it be attractive or repulsive) and the force from the other decreases. This means that the electric field is changing (the only way to get an unbalanced force). In addition, if the two add together, why do you get σ/E0 for the answer. Shouldn't each have a field vector of σ/E0 and when they add, 2σ/E0? I don't really see how they get σ/2E0 for each plate when they each have a charge density of σ. Finally, why does the field not vary with the distance? Is it just a property of a plate or am I just missing something?
 
Last edited:
Physics news on Phys.org
  • #2
Yes, you are missing something. You are missing the approach you need to take to solve the problem. You can not just guess what the field is going to do with distance, you should calculate it using concepts you have learned.

What useful concept/theorem could you use to calculate the electric field from a nice, symmetric distribution of charge, such as in this problem?
 
  • #3
Gokul43201 said:
What useful concept/theorem could you use to calculate the electric field from a nice, symmetric distribution of charge, such as in this problem?

I'm guessing you are talking about Gauss's Law, but if you integrate, you get the integral of 2ko<pi>dr/r2. Therefore the force does vary by difference, that's Coulomb's Law

I'm not saying you're wrong, but I'm just finding things conflicting with each other
 
Last edited:
  • #4
LonghornDude8 said:
I'm guessing you are talking about Gauss's Law, but if you integrate, you get the integral of 2ko<pi>dr/r2. Therefore the force does vary by difference, that's Coulomb's Law
No, that's not correct. Do this carefully, and one step at a time. If you use Gauss' Law correctly, you end up having to do little or no integration. And in any case, please be as descriptive as possible in explaining yourself.

First, when applying Gauss' Law, you need to begin by constructing a Gaussian surface. What is the shape of the surface, and where is it constructed? Then what's the next step?
 
  • #5
Gokul43201 said:
First, when applying Gauss' Law, you need to begin by constructing a Gaussian surface. What is the shape of the surface, and where is it constructed? Then what's the next step?

The Gaussian surface is a plane (flat plane) and I actually just found the powerpoint from my teacher and there was a slide on this. I understand what you need to do to solve the problem, I just don't really understand why Coulomb's law does not apply.
 
  • #6
LonghornDude8 said:
The Gaussian surface is a plane (flat plane) and I actually just found the powerpoint from my teacher and there was a slide on this. I understand what you need to do to solve the problem, I just don't really understand why Coulomb's law does not apply.
Coulomb's Law does apply, so long as you apply it correctly. What is important about Coulomb's Law is that it applies only to a single point charge. To calculate electric fields from a distribution of charges via Coulombs law, you would have to integrate the electric field (which is a vector quantity, so you have to be careful with this) due to each of the charges spread out over the entire surface containing them. This can be a messy thing to do, which is why it is often easier to utilize the symmetry of the problem and apply Gauss' Law.

Furthermore, the Gaussian surface, is not a plane. Gauss' Law tells you about the flux through a closed surface, and a plane is not a closed surface. Look up "Gaussian pillbox".
 

Related to Why Is the Electric Field Zero Between Uniformly Charged Parallel Plates?

What are parallel insulating plates?

Parallel insulating plates are two or more flat, non-conductive materials placed side by side with a small gap between them. They are commonly used in electrical circuits to prevent the flow of current between two points.

Why are parallel insulating plates used?

Parallel insulating plates are used to create a barrier between two points in an electrical circuit, preventing the flow of current and reducing the risk of electrical shock or short circuit. They also help to maintain a consistent and predictable flow of electricity in a circuit.

How do parallel insulating plates work?

Parallel insulating plates work by creating a physical barrier between two points in an electrical circuit. This barrier prevents the flow of electrons, which carry the electrical current, from passing through and completing the circuit. The gap between the plates is filled with a non-conductive material, such as air or plastic, which further insulates and blocks the flow of current.

What materials are commonly used for parallel insulating plates?

The most common materials used for parallel insulating plates are plastic, rubber, and glass. These materials are non-conductive, meaning they do not allow electricity to pass through them, making them ideal for creating a barrier in electrical circuits. Other materials such as wood, paper, and ceramic can also be used as insulators.

Can parallel insulating plates be used in high voltage applications?

Yes, parallel insulating plates can be used in high voltage applications. However, the materials used must have a high dielectric strength, meaning they can withstand high electric fields without breaking down. Additionally, the plates must be thick enough to prevent arcing, which is a discharge of electricity through the air between two points.

Similar threads

  • Advanced Physics Homework Help
Replies
3
Views
2K
  • Advanced Physics Homework Help
Replies
1
Views
2K
Replies
1
Views
2K
  • Introductory Physics Homework Help
Replies
18
Views
2K
  • Introductory Physics Homework Help
Replies
11
Views
557
  • Introductory Physics Homework Help
Replies
4
Views
978
  • Advanced Physics Homework Help
Replies
1
Views
5K
  • Introductory Physics Homework Help
Replies
6
Views
442
  • Advanced Physics Homework Help
Replies
4
Views
3K
  • Introductory Physics Homework Help
Replies
26
Views
753
Back
Top