SamRoss said:
So your reasoning is that a curved line is the definition of a force
The definition of a curved line is one that has non-zero
acceleration. The concept of force is introduced (for a fixed mass object) as mass multiplied by acceleration. This is what a force is, nothing more and nothing less. It turns out that modelling forces in certain ways provides a useful description of some natural phenomena but this is a connection to those phenomena that is utterly irrelevant to what is being regarded here. What is relevant is kinematics, not dynamics.
SamRoss said:
As I see it, the geometry is only a representation of what's happening in the real world.
This is true for anything yoy describe in physics, including forces.
SamRoss said:
The force has physical meaning; the curved line is the representation of the trajectory of the object under the influence of that force
The force does not have any more physical meaning than the acceleration. Both are mathematical descriptions of observable phenomena. One is relevant to kinematics, the other not. Both are irrelevant to proper time - only geometry is relevant to proper time. Then you can connect some of that geometry to statements about acceleration in Minkowski space, but the force is still irrelevant to the description. Force only becomes relevant when you ask the question how an object came to follow a particular curved world-line. It is irrelevant to the proper time.
SamRoss said:
The force has physical meaning; the curved line is the representation of the trajectory of the object under the influence of that force. The trajectory is not arbitrary - it does not "come first" - but rather follows from physical laws.
Obviously, but you are still wrong. You do not need to know anything about the force to compute proper time, all you need is the world-line. If you observe an object following a particular world-line it does not matter in the slightest how it came to follow that world-line. The world-line is every bit as physical as the force.
SamRoss said:
Of course, it would be possible to define the word "force" simply with respect to the curvature of a line, but then we would be doing pure math and not physics. We would lose the connection to the real world.
No, you are simply wrong here. It is how we define force. Then we make a mathematical model of how different forces appear and there is your connection to dynamics. However, again, this is not needed for the physics under consideration. Compare with the situation in classical mechanics where you want to know how long it takes an object to move a distance with constant acceleration. If you are given the acceleration (kinematics), dynamics are irrelevant. Obviously, if you want to know why the object moved that way you need to do dynamics, but this is totally irrelevant to computing the time. If you do not agree with this you essentially have a beef with the entire middle school physics curriculum.
SamRoss said:
We would lose the connection to the real world.
Again, wrong, we are not trying to explain why an object follows a particular world-line. We are computing the proper time along it. This is a physical observable measured by a clock. You are essentially saying clocks are not connected to the real world.