SamRoss said:
Interesting. I would have thought you could string together an infinite number of inertial frames to get an accelerating one. Could you direct me to where I can read about measuring time and space in an accelerating reference frame and how this is different from stringing together inertial frames?
Here's the problem: Suppose that you are at rest in one frame up until time ##t=0##, then you accelerate quickly so that you are now at rest in a second frame. The first frame uses coordinates ##(x,t)## and the second frame uses coordinates ##(x',t')##. How can you piece together these two inertial frames so that you have a noninertial frame? Since "frame" is a little ambiguous, let me switch the problem to that of coordinate systems. How can you piece together two inertial coordinate systems, ##(x,t)## and ##(x',t')## to come up with a noninertial coordinate system?
The obvious thing would be to use the first coordinate system for events prior to ##t=0##, and use the second coordinate system for events after ##t=0##. Here's the problem with that. In the drawing below, I've drawn a representation of a region of spacetime. I've used the black lines to indicate the t-axis and the x-axis. I've used blue lines to indicate the t'-axis and the x'-axis. If you're wondering why the t' and x' axes seem tilted, that's just the Lorentz transformations. The t' axis is the line satisfying the equation ##x' = 0##, which in terms of the original coordinates ##(x,t)## is the equation ##\gamma (x - v t) = 0## or ##t = x/v##. So the t'-axis is a line with slope ##1/v## when plotted in terms of ##x,t##. The x' axis is the line satisfying ##t'=0##, which in terms of ##(x,t)## is the line ##\gamma (t - \frac{vx}{c^2}) = 0## or ##t = \frac{vx}{c^2}##. So the x' axis is a line with slope ##\frac{v}{c^2}##.
So our obvious way of combining coordinate systems is to use ##(x,t)## for events prior to the change of frames, and to use ##(x',t')## for events after the change. However, if you look at the chart, I've divided spacetime into numbered regions. Our rule works fine for regions 1, 3,4, 5, 7, and 8. However, there are two regions that are problematic: Region 6 is doubly-covered. According to coordinate system ##(x,t)##, it covers event prior to the change of frames, and therefore should be described using the coordinates ##(x,t)##. But according to the coordinate system ##(x',t')##, it covers events after the change of frames and so should be described using the coordinates ##(x',t')##. Both coordinate systems claim this region.
We have the opposite problem for region 2. It is not covered at all. According to the coordinate system ##(x,t)##, it covers events that take place after the frame change, and so should be described using coordinates ##(x',t')##. According to coordinate system ##(x,t)##, region 2 takes place before the frame change, so should be described using coordinates ##(x,t)##. Neither coordinate system claims this region.
There is no obvious way to come up with a coordinate system for an accelerated observer that
- Covers every point in spacetime.
- Doesn't double-cover any points in spacetime.
- Has the observer at rest at all times.