Why is the group Z_10 not a free group?

  • Thread starter Thread starter ehrenfest
  • Start date Start date
  • Tags Tags
    Group
ehrenfest
Messages
2,001
Reaction score
1

Homework Statement


I don't understand why every group is not free. Apparently Z_10, for example is not a free group. Can someone give me an example of why this group does not satisfy the definition of a free group?


Homework Equations





The Attempt at a Solution

 
Physics news on Phys.org
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top