- #1
Leo Liu
- 353
- 156
- Homework Statement
- .
- Relevant Equations
- .
I saw the following equation on page 31 in Purcell's EM textbook.
$$F=\epsilon_0\int_{E_1}^{E_2} E\, dE=\frac 2 {\epsilon_0} (E_2^2-E_1^2)$$
Here, F is the force on a unit area.
And then he claims that since ##E_2-E_1=\sigma/\epsilon_0##, the equation can be further simplified to
$$F=\frac 1 {\epsilon_0}(E_1+E_2)\sigma$$
However, I think the correct coefficient in the last part of first equation should be the inverse of what it is now (##\frac{\epsilon_0}{2}## instead), as only then can I obtain the second expression. I have no idea why the author wrote the equation this way. To give it a little bit of background, dE is the change in the electric field of a thin layer of a charged sphere, E1 is the the electric field inside, and E2 is the electric field outside. Could someone explain?
$$F=\epsilon_0\int_{E_1}^{E_2} E\, dE=\frac 2 {\epsilon_0} (E_2^2-E_1^2)$$
Here, F is the force on a unit area.
And then he claims that since ##E_2-E_1=\sigma/\epsilon_0##, the equation can be further simplified to
$$F=\frac 1 {\epsilon_0}(E_1+E_2)\sigma$$
However, I think the correct coefficient in the last part of first equation should be the inverse of what it is now (##\frac{\epsilon_0}{2}## instead), as only then can I obtain the second expression. I have no idea why the author wrote the equation this way. To give it a little bit of background, dE is the change in the electric field of a thin layer of a charged sphere, E1 is the the electric field inside, and E2 is the electric field outside. Could someone explain?
Last edited: