Why Is Vector Notation Essential in Cross Product Calculations?

  • Thread starter Thread starter moatasim23
  • Start date Start date
  • Tags Tags
    Operator Vector
AI Thread Summary
Vector notation is essential in cross product calculations because it provides a clear framework for expressing the components of vectors. While the components can be denoted as r1, r2, r3, using x, y, and z is common for position vectors, emphasizing their physical context. The mathematical identity of the cross product remains valid regardless of the component names used, whether they are labeled as u1, u2, u3 or any other terms. The notation helps in understanding how the vector operator functions and how components relate to each other in calculations. Ultimately, clarity in notation is crucial for accurately performing vector operations.
moatasim23
Messages
77
Reaction score
0
Why do we use the coordinates of r in terms of x,y,z?Why don't we express coordinates of A in x,y,z?
 

Attachments

  • Physics.png
    Physics.png
    10.7 KB · Views: 505
Physics news on Phys.org
A is expressed in terms of x y and z.
 
It's a matter of notation: we're just giving names to the three components of both vectors.
You can replace them by ##r_1, r_2, r_3##, if that makes you feel any better. In general, if v is a vector, it is customary to denote its components by v1, v2, v3. However, if r is the position vector, then (x, y, z) is also quite common.

Also note that though the fact that one is named r hints that it comes from a physical application in which a position vector is involved, the mathematical identity actually holds for any two vectors u, v.
 
No its not..here at least
 
CompuChip said:
It's a matter of notation: we're just giving names to the three components of both vectors.
You can replace them by ##r_1, r_2, r_3##, if that makes you feel any better. In general, if v is a vector, it is customary to denote its components by v1, v2, v3. However, if r is the position vector, then (x, y, z) is also quite common.

Also note that though the fact that one is named r hints that it comes from a physical application in which a position vector is involved, the mathematical identity actually holds for any two vectors u, v.

If we use r1,r2,r3 then how would the vector operator operator operate on it?Like it didnt in A when we used A1,A2,A3.
 
What are you talking about?
 
moatasim23 said:
No its not..here at least
I'm sorry - the example in your attachment very clearly states that

A=A1i+A2j+A3k

That means that
- the x component of A is A1,
- the y component of A is A2,
- the z component of A is A3.

Therefore: A is resolved in terms of x, y, and z.

What did you think it meant?
 
I don't understand your question, I think.

If ##\mathbf v = v_1 \mathbf i + v_2 \mathbf j + v_3 \mathbf k## and ##\mathbf u = u_1 \mathbf i + u_2 \mathbf j + u_3 \mathbf k## then
$$\mathbf u \times \mathbf v = (u_2 v_3 - u_3 v_2) \mathbf i + (u_3 v_1 - u_1 v_3) \mathbf j + (u_1 v_3 - u_3 v_1) \mathbf k$$

That's just how the cross product works. It doesn't matter how you call the components. You could replace ##u_1##, ##u_2## and ##u_3## by ##x##, ##y## and ##z## or clubs, spades, hearts or bunny, cow, eagle and the definition would still be the same.

Is it the notation of a vector like##\mathbf v = v_1 \mathbf i + v_2 \mathbf j + v_3 \mathbf k## instead of ##\mathbf v = (v_1, v_2, v_3)## that confuses you?
 
Back
Top