ramollari said:
Hi Evo, I appreciate your suggestion about the cisco article. But I know the essential details of DSL and instead of becoming an expert in this technology I wanted to clarify that particular issue. If you are interested in networking we could discuss any topic together. Indeed I'm trying to engineer a secure LAN messenger for my dissertation.
I thought you were questioning guard bands and types of multiplexing to achieve higher bandwidth. That is why I brought up VDSL, utilizing DMT, it addresses both issues.
ramollari said:
Why do these frequencies have to be spaced by a certain amount to avoid interference?
Guard bands are utilized to prevent signal overlap and can be varied in size. The VDSL standard requires very minimal guard bands and with DMT you're talking about a 7.8% loss as opposed to SCM which has a 20% loss.
ramollari said:
Couldn't an arbitrary number of electrical signals of different frequencies be multiplexed to achive very high data rates? In the same way as a continuous spectrum of colors are multiplexed in a beam of white light.
Dense Wave Division Multiplexing (DWDM) which is used to transmit at different wavelengths over optical fiber is similar to Frequency Division Multiplexing (FDM) which divides the bandwidth on the analog lines (utilized for DSL) into narrower bands.
This is where utilizing DMT for VDSL becomes interesting in response to your question. This is an exerpt from a white paper on it.
Digital Duplexing Techniques Achieve Higher Spectrum Utilization
For full duplex operation, the upstream and downstream signals can be separated through frequency division multiplexing (FDM). In traditional modulation techniques, such as SCM, FDM is achieved via filtering. It is known that the spectral confinement and time confinement of a signal are inversely proportional to each other. Therefore, SCM systems must use an engineering trade-off between their filter length (time confinement) and excess bandwidth (efficiency in frequency confinement). For example, a higher filter order may reduce the frequency spectrum overhead and increases the frequency utilization, but it also results in severe penalties, and therefore, higher cost. First the filter implementation requires a higher order, requiring more multiplications. Second, to take advantage of the reduction in overhead, the timing requirements are more stringent, to avoid introduction of ISI caused by a longer filter impulse response.
Typical SCM systems have a loss or excess bandwidth of 20% in the spectrum to achieve a reasonable filter size in the time domain.
In DMT solutions such as VDSL, FDM can be implemented by utilizing techniques such as digital duplexing, where the transmitter and the receiver are synchronized, obviating the need for filters. In digital duplexing, the separation of upstream and downstream bands is achieved by using the orthogonal property of IDFT/DFT, with the resulting higher spectrum utilization. However, DMT systems have a loss in bandwidth that is about 7.8% for VDSL systems. This loss is due to the use of a cyclic extension in the time domain in order to simplify the equalization and to provide orthogonality of the up and down stream directions. This loss is significantly less than the 20% loss in SCM systems used for VDSL.
http://www.ikanos.com/solutions/pdfs/dmt_benefits_oct02.pdf