RUTA said:
The weirdness is trivially resolved if you accept the QM predictions, which we know give CM via averages. That's what most physicists do, i.e., most physicists don't bother with foundations of QM. This attitude is famously called "shut up and calculate" by Mermin. As argued by Becker, physicists do require physical models to do physics (he has some nice examples in his book) and these models are what allow physicists to create new approaches to theory and experiment. Einstein thought QM was incomplete precisely because his model of physical reality would not accommodate QM predictions for entangled states. Bell's inequalities were derived precisely in response to Einstein's model of physical reality. In Sabine's new book, even Weinberg admits to looking for a theory underwriting QM because it violates his model of physical reality (that's not how he worded it of course).
It's of course true that you need intuitive pictures about physics to "create" (or rather "discover") new theoretical models, but Einstein is a prime example for the danger of being trapped in philosophical prejudices.
Of course, in some sense the minimal statistical interpretation indeed is indeed a kind of nicer expression for "shutup and calculate". The question is whether you can expect more from a natural science than just this: You have a model (or even theory) which allows you to predict the outcome of observations, measurements, and experiments and than compare these expectations with the observations. If these expectations agree with the data, it's fine for the model, otherwise you have to think harder about what's wrong with the model and find a new one. This is indeed a creative act, and you need intuitive pictures to get the (finally) the right idea how to describe the phenomena with existing (which is almost always the case) models/theories or you have to find a new one (this occurred only two times after Newton, i.e., with the discovery of relativity around 1905 and of quantum theory in 1925).
I know that Weinberg thinks there is something unsolved with the foundations of quantum theory from his textbook on quantum mechanics (as always among the best textbooks on the subject). Although for me Weinberg is a role model for how to do theoretical physics (with a strict "no-nonsense approach" and with a clear mathematical exposition of all the papers and textbooks by him I'm aware of), this I do not understand, since there's no contradiction whatsoever with quantum theory and its application to real-world observations. So what should be incomplete in its applications?
I've not yet read Hossenfelders new book. The title "lost in math" already appalls me, since my view on theoretical physics is the opposite (I'd rather say "lost without math" ;-)), but I think she has indeed a point in saying that maybe we have to widen our view to new (mathematical) methodology beyond the symmetry paradigm, which was indeed the right paradigm for 20th-century physics in creating quantum theory (for me there's no convincing way to formulate quantum theory without symmetry principles and Nother's works on symmetries and conservation laws), relativity, and the Standard Models of elementary particle physics and cosmology, but it may well be that we need new methods to find a unified theory of QT and GR. She is also right in saying that it is hard to conceive whether we have a chance without new empirical findings clearly contradicting one of these fundamental theories (or rather our best approximation of the maybe and hopefully existing but yet undiscovered more comprehensive theory).
Towards Becker's book, I've a mixed feeling. On the one hand I find it overdue to get Bohr, Heisenberg, et al from their pedestal. The true interpretational problem is due to the unjustified predominance of the Copenhagen flavor of interpretations, and Bohr's writings on the subject doing more harm than good, because they are usually not well formulated and too vague and too qualitative ("lost without math"! indeed) to be not subject to speculations about their meaning. That said, Heisenberg is even worse! On the other hand, I cannot agree with Becker's enthusiasm for the de Broglie-Bohm approach since there's to my knowledge no convincing formulation of relativistic QFT within this approach. Any interpretation must be an interpretation of all of the working QTs, applied to real-world phenomena, and this includes relativistic local QFT although it's still not a mathematically strictly defined theory.
What we're saying in our paper and book (and how I close my Insight) is that there is a model of physical reality (not simply "shut up and calculate" aka "instrumentalism") for which QM makes sense and is compatible with relativity. In this Insight, we see that the QM correlations follow from conservation of angular momentum for the quantum exchange of momentum as required for no preferred reference frame. That's compelling, but provides no 'causal influence' or hidden variables to account dynamically for the outcomes on a trial-by-trial basis. The constraint here only holds over space AND time, it's truly 4D, and it has no compelling dynamical counterpart. What we argue in our book (and in my blockworld Insight series) is that 4D constraints are fundamental, not dynamical laws. Most people disagree strongly with this (consider Fermat's Principle of Least Time versus Snell's Law, for example, which really explains the light ray's trajectory?). However, in case after case, we see that mysteries arise in physics because we demand dynamical explanation and all such mysteries disappear when we accept the explanation via 4D constraints. This is just one of many such examples.
Well, I've to read the Insight article again. So far I couldn't get the content of the whole approach :-(. I also do not understand, what philosophers and philosophy-attached physicists mean, when they talk about "reality". For me QT is the best description of reality we have, and the only thing that's incomplete with it is the lack of a consistent quantum description of gravity. For me there's no interpretational issue at all, and I don't think that looking for classical/deterministic non-local descriptions have a chance to lead to anything, because a non-local theory is hard to formulate within relativistic physics. One historical failure is Feynman's and Wheeler's attempt to formulate an action at a distance (non-local) theory for interacting systems of charged particles. Although this "absorber theory" seems to work to some extent on a classical level, there was (so far) nobody able to build a quantum formulation of it.
So, this Insight really vindicates the shut-up-and-calculate attitude by providing a model of physical reality in which QM doesn't need to be 'fixed' or underwritten (anymore so than we already have with QFT anyway). QM is in beautiful accord with a truly 4D reality constrained in 4D fashion in such a way as to guarantee dynamical experience per CM.
I spent 24 years trying to figure out Mermin's "quantum mysteries for anybody." I finally feel as though I have the answer (a model of physical reality in which QM entanglement is in perfect accord with CM and SR). The invariant manner by which Mermin's "mysterious" QM correlations follow from conservation principles and lead to CM honestly makes me say, "how could I have been so stupid for so long?"
QM entanglement is in perfect accord with SR and with none local classical model. So there must be a non-local aspect in what you call "classical mechanics", but as I said, I better make another attempt to understand your Insight article.