Emspak
- 240
- 1
Homework Statement
Picture a rod of length L with N turns of wire around it
What is the work done when one doubles the magnetization? We'll assume the coil has negligible resistance.
Homework Equations
\mathcal M is total magnetization of the rod.
M is magnetic moment
C_c is curie constant
\mathcal H is magnetic field strength
T is temperature
B = \mu_0 (\mathcal H + \mathcal M)
M = \mu_0 V \mathcal M
M = \frac{C_c \mathcal H}{T}
The Attempt at a Solution
OK, so I want to find the work. The power put into the system is P = (emf) * I where emf is electromotive force and I is current. So the work in time dt will be
d'W = \mathcal E I dt
Since \mathcal H = \frac{NI}{L}
and \mathcal E = -NA \frac{dB}{dt} (where A is the cross-sectional area of the rod) we can substitute in and get
d'W = V \mathcal H dB
from earlier B = \mu_0 (\mathcal H + \mathcal M) so dB = \mu_0 d \mathcal H + \mu_0 d \mathcal M so:
d'W = \mu_0 V \mathcal H d \mathcal H + \mu_0 V \mathcal H d \mathcal M
Integrating this I should end up with:
\int d'W = \int \mu_0 V \mathcal H d \mathcal H + \mu_0 V \mathcal H d \mathcal M = \int \mu_0 V \mathcal H d \mathcal H + \int^{\mathcal 2M}_{\mathcal M} \mu_0 V \mathcal H d \mathcal M
= \mu_0 V ( \int \mathcal H d \mathcal H + \int^{\mathcal 2M}_{\mathcal M} \mathcal H d \mathcal M) = \mu_0 V ( \frac{\mathcal H^2}{2} + \mathcal H \mathcal M)\left. \right|_{\mathcal M}^{\mathcal 2M}
And putting it all together I should have:
= \mu_0 V ( \frac{\mathcal H^2}{2} + \mathcal H \mathcal 2M) - \mu_0 V ( \frac{\mathcal H^2}{2} + \mathcal H \mathcal M) = \mu_0 V (H \mathcal M) = \mu_0 V (\mathcal H \frac {M}{\mu_0 V}) = \mu_0 V \frac{C_c \mathcal H^2}{T \mu_0 V} = \frac{C_c \mathcal H^2}{T}
But that's wrong. The solution I found says it is -3\frac{\mathcal H^2}{2} ( \mu_0 V + \frac{C_c}{T} )
So I think I missed a negative sign or made an error in the integral somewhere. Or I just need to add the factor that expresses the work done in the absence of the rod, which seems to have somehow got lost. I suspect it is that one of the integrals I get should be negative, since we're talking about work done on the rod by the field.
If anyone can tell me where I lost the plot I'd be most appreciative. Thanks.