Y=KX^n Graphing and Coefficient

AI Thread Summary
The discussion centers on determining the values of N and K in the equation y=KX^N to make the graph a straight line. It is established that for the graph to be linear, N must equal 1, while K can be any non-zero constant. The data points provided show a curved negative slope, suggesting an exponential relationship. By applying logarithmic transformations, participants note that plotting Log(y) versus Log(x) yields a linear relationship, indicating a potential exponential decay model. Overall, the analysis suggests that the relationship may not fit the original equation as expected.
lunapt
Messages
5
Reaction score
0
So there's this graph in chemistry with a curved negative slope shape.

(x, y)
(0.16, 104.61)
(0.26, 39.62)
(0.35, 21.86)
(0.56, 8.54)
(0.70, 5.47)
(0.98, 2.79)


The equation is y=KX^N

1) What is the value of N for which the graph would be a straight line?
2) What is the value of K for which the graph would be a straight line?


No idea how to do this.
 
Mathematics news on Phys.org
lunapt said:
So there's this graph in chemistry with a curved negative slope shape.

(x, y)
(0.16, 104.61)
(0.26, 39.62)
(0.35, 21.86)
(0.56, 8.54)
(0.70, 5.47)
(0.98, 2.79)


The equation is y=KX^N

1) What is the value of N for which the graph would be a straight line?
2) What is the value of K for which the graph would be a straight line?


No idea how to do this.

Using purely qualitative understanding of functions, you would expect any equation of the form, y=kx where y is the dependant varialbe, x is the independant variable, and k is any real nonzero number constant, the be an equation for a line. Knowing that, if you wished y=kx^n to be a line, then n=1, and again, k is any real constant not equal to zero.
 
Your (x, y) data show x going through one cycle of 10 and y going through about two cycles of 10. An exponential fit might be reasonable to try. You get a better idea if you plot the points on cartesian paper. Maybe semilog paper, too.
 
i tried exponentially, and if i put in logy and input y values, then its almost a straight line...
how do i find n?
 
Welcome to PF, lunapt!:

Consider that:
y=K X^N
\log y=\log(K X^N)
\log y=\log K + N \log X

The method would be to set up the regular equation for a line.
And then match the coefficients with log(K) and N.

However, it seems to me that your equation wouldn't fit (but I did not work it out).
It seems more likely that your relation is y=K N^X.
So:
\log y = \log(K N^X)
\log y = \log K + X \log N
 
lunapt,

Your points plotted on a cartesian system directly appear like exponential decay. Your points when treated as Log(y) versus Log(x) and then plotted seem to give a very clean, accurate, line.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
13
Views
3K
Replies
6
Views
3K
Replies
2
Views
3K
Replies
3
Views
2K
Replies
6
Views
5K
Back
Top