Juqon
- 31
- 0
Homework Statement
Calculate the zero-point energy of the hydrogen atom using the Ritz variaton principle and the approach \psi_{\alpha}.
Hint: The stationary Schroedinger equation in spherical coordinates is ...
Homework Equations
\left\{ -\frac{\hbar^{2}}{2\mu}\left[\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r}\frac{\partial}{\partial r}\right]+\frac{\hat{\vec{L}}^{2}}{2\mu r^{2}}+V(r)\right\} \psi=E\psi<br /> <br /> \psi_{\alpha}(\vec{r})=C\exp\left\{ -\alpha r\right\} ;C>0;\alpha>0; C,\alpha=const. <br /> <br /> \int_{0}^{\infty}dr\cdot r\cdot\exp\left\{ -2\alpha r\right\} =\frac{1}{4}\alpha^{2}<br /> <br /> \int_{0}^{\infty}dr\cdot r^{2}\cdot\exp\left\{ -2\alpha r\right\} =\frac{1}{4}\alpha^{3}
The Attempt at a Solution
<br /> \left\{ -\frac{\hbar^{2}}{2\mu}\left[\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r}\frac{\partial}{\partial r}\right]+\frac{\hat{\vec{L}}^{2}}{2\mu r^{2}}+V(r)\right\} \psi=E\psi<br /> <br /> \Leftrightarrow \left\{ -\frac{ \hbar^{2} }{2\mu} \left [\frac{\partial^{2}} {\partial r^{2}}+ \frac{2}{r} \frac {\partial} {\partial r} \right]+ \frac {\left(\hbar^{2} l(l+1) \right)^{2}} {2\mu r^{2}}+\frac{1} {4\pi\epsilon_{0} } \frac{qQ}{r} \cdot C \cdot \exp -\alpha r \right\} \cdot C\cdot\exp\left\{ -\alpha r\right\} = E \cdot C\cdot\exp\left\{ -\alpha r\right\}<br /> <br /> \Leftrightarrow \left\{ -\frac{\hbar^{2}}{2\mu}\left [\alpha^{2}-\frac{2}{r}\alpha\right] +\frac{\hbar^{4}l^{2} (l^{2}+2l+1)}{2\mu r^{2}} +\frac{1}{4\pi\epsilon_{0}}\frac{qQ} {r}\right\} \cdot C\cdot\exp\left\{ -\alpha r\right\} = E \cdot C\cdot\ exp\left\{ -\alpha r\right\}<br /> <br /> \Leftrightarrow E=\left\{ -\frac{\hbar^{2}}{2\mu}\left[\alpha^{2}-\frac{2}{r}\alpha \right]+\frac{\hbar^{4}l^{2}(l^{2}+2l+1)}{2\mu r^{2}}+\frac{1}{4\pi\epsilon_{0}} \frac{qQ}{r}\right\}
Where do I need to integrate at all?
Last edited: