What is Hamiltonian: Definition and 894 Discussions

In the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle (or Hamiltonian circuit) is a Hamiltonian path that is a cycle. Determining whether such paths and cycles exist in graphs is the Hamiltonian path problem, which is NP-complete.
Hamiltonian paths and cycles are named after William Rowan Hamilton who invented the icosian game, now also known as Hamilton's puzzle, which involves finding a Hamiltonian cycle in the edge graph of the dodecahedron. Hamilton solved this problem using the icosian calculus, an algebraic structure based on roots of unity with many similarities to the quaternions (also invented by Hamilton). This solution does not generalize to arbitrary graphs.
Despite being named after Hamilton, Hamiltonian cycles in polyhedra had also been studied a year earlier by Thomas Kirkman, who, in particular, gave an example of a polyhedron without Hamiltonian cycles. Even earlier, Hamiltonian cycles and paths in the knight's graph of the chessboard, the knight's tour, had been studied in the 9th century in Indian mathematics by Rudrata, and around the same time in Islamic mathematics by al-Adli ar-Rumi. In 18th century Europe, knight's tours were published by Abraham de Moivre and Leonhard Euler.

View More On Wikipedia.org
  1. S

    Taylor expansion of an Ising-like Hamiltonian

    For the case when ##B=0## I get: $$Z = \sum_{n_i = 0,1} e^{-\beta H(\{n_i\})} = \sum_{n_i = 0,1} e^{-\beta A \sum_i^N n_i} =\prod_i^N \sum_{n_i = 0,1} e^{-\beta A n_i} = [1+e^{-\beta A}]^N$$ For non-zero ##B## to first order the best I can get is: $$Z = \sum_{n_i = 0,1}...
  2. JD_PM

    Get all possible constants of motion given an explicit Hamiltonian

    I do not understand the following sentence (particularly, the concept of extra symmetry): 'If all ##\alpha^i## are the same, then there is extra symmetry and corresponding constants of motion'. OK so let's find the Lagrangian; we know it has to have the form: $$L(q, \dot q) = T(q, \dot q) -...
  3. Diracobama2181

    I Hamiltonian Commutation Question

    Why is it the case that when some operators commute with the Hamiltonian (let's say A and ), it implies A and B commute, but even when each angular momentum component commutes with the Hamiltonian, it does not imply each the angular momentum components commute with each other?
  4. JD_PM

    How to show that ##f_i(q_i, p_i)## is constant

    Alright my idea is that, in order to show that ##f_i(q_i, p_i)## is a constant of motion, it would suffice to show that the Hamiltonian is equal to a constant. Well, the Hamiltonian will be equal to a constant iff: $$f(q_1, q_2, ..., q_N, p_1, p_2,..., p_N) = \text{constant}$$ Which is what...
  5. M

    Show that the Hamiltonian is Hermitian for a particle in 1D

    I need help with part d of this problem. I believe I completed the rest correctly, but am including them for context (a)Show that the hermitian conjugate of the hermitian conjugate of any operator ##\hat A## is itself, i.e. ##(\hat A^\dagger)^\dagger## (b)Consider an arbitrary operator ##\hat...
  6. Riemann9471

    Operator that commutes with the Hamiltonian

    Homework Statement: In the case of the quantum harmonic oscillator in 3D , does the z-component of the angular momentum of a particle commute with the Hamiltonian? Does the fundamental state has a well defined value of L_z (variance = 0) ? If you said no , why? If you said yes , what is the...
  7. J

    Find the eigenvector with zero eigenvalues at any time t from the Hamiltonian

    I have a question relates to a 3 levels system. I have the Hamiltonian given by: H= Acos^2 bt(|1><2|+|2><1|)+Asin^2 bt(|2><3|+|3><2|) I have been asked to find that H has an eigenvector with zero eigenvalues at any time t
  8. C

    I Question regarding a Free particle and Hilbert space (QM)

    In quantum mechanics, the Eigenfunction resulting from the Hamiltonian of a free particle in 1D system is $$ \phi = \frac{e^{ikx} }{\sqrt{2\pi} } $$ We know that a function $$ f(x) $$ belongs to Hilbert space if it satisfies $$ \int_{-\infty}^{+\infty} |f(x)|^2 dx < \infty $$ But since the...
  9. Cocoleia

    Infinite square well, dimensionless Hamiltonian..

    I have always seen this problem formulated in a well that goes from 0 to L I am confused how to use this boundary, as well as unsure of what a dimensionless hamiltonian is. This is as far as I have gotten
  10. binbagsss

    A Hamiltonian background magnetic field, perturbed by electric field

    Hi I'm looking at Tong notes http://www.damtp.cam.ac.uk/user/tong/qhe/two.pdf deriving the Kubo Formula, section 2.2.3, page 54,I don't understand where the Hamiltonian comes from (eq 2.8). I tried a quick google but couldn't find anything. I'm not very familiar with EM Hamiltonians, any help/...
  11. peguerosdc

    Given a set of equations, show if it is a Hamiltonian system

    Hi! So this is my first homework ever of Hamiltonian dynamics and I am struggling with the understanding of the most basic concepts. My lecturer is following Saletan's and Deriglazov's and from what I have read and from my lectures, this is what I think I know. Please let me know if this is...
  12. M

    A Time-dependent unitary transformations of the Hamiltonian

    Hi! I recently came across a quantum mechanics problem involving a change of basis to a rotating basis. As part of the solution, I wanted to transform the Hamiltonian operator into the rotating basis. Since the new basis is rotating, the basis change operator is time-dependent. This led to a...
  13. Garlic

    Landau levels: Hamiltonian with ladder operators

    Dear PF, I hope I've formulated my question understandable enough. Thank you for your time, Garli
  14. L

    I A little help with a two particle Hamiltonian

    Hello, I'm working on a project. I need to understand every equation in a paper. I need to calculate the spatial derivative of G (d/dR), a two-particle Hamiltonian. However, G is a function of P- the density matrix and P is a function of R. Is it a "special derivative"? Here is the attached...
  15. Cocoleia

    Diagonalizing a (dimensionless) Hamiltonian

    I am given this Hamiltonian: And asked to diagonalize. I understand how we do such a Hamiltonian: But I don't understand how to deal with the extra term in my given Hamiltonian. Usually we use To get
  16. dRic2

    Hamiltonian Mechanics: why paths in state space never cross each other

    I'm reading a book about analytical mechanics and in particular, in a chapter on hamiltonian Mechanics it says: "In the state space (...) the complete solutionbof the canonical equations is pictured as an infinite manifold of curves which fill (2n+1)-dimensional space. These curves never cross...
  17. schwarzg

    A Simultanious eigenstate of Hubbard Hamiltonian and Spin operator in tw

    Please see this page and give me an advice. https://physics.stackexchange.com/questions/499269/simultanious-eigenstate-of-hubbard-hamiltonian-and-spin-operator-in-two-site-mod Known fact 1. If two operators ##A## and ##B## commute, ##[A,B]=0##, they have simultaneous eigenstates. That means...
  18. M

    Conservation laws in Newtonian and Hamiltonian (symplectic) mechanics

    In Newtonian mechanics, conservation laws of momentum and angular momentum for an isolated system follow from Newton's laws plus the assumption that all forces are central. This picture tells nothing about symmetries. In contrast, in Hamiltonian mechanics, conservation laws are tightly...
  19. K

    I Standard deviation of the Hamiltonian?

    I am currently reading Griffiths Introduction to Quantum Mechanics, 2nd Edition. I am aware that, in light of considering potential functions independent of time, the Schrödinger equation has separable solutions and that these solutions are stationary states. I am also aware (If I stand correct)...
  20. Cryo

    Hamiltonian for Charged Particles + EM-Field

    Summary: I have found the Hamiltonian for the free particles and the electromagnetic field (##\mathbf{E}## - electric, ##\mathbf{B}## - magnetic) to be (non-relativistic !): ##H=\sum_i \frac{m \dot{r}_i^2}{2} + \int d^3 r \left(\frac{\epsilon_0}{2} E^2 + \frac{1}{2\mu_0} B^2\right)## (1)...
  21. E

    I The partial time derivative of Hamiltonian vs Lagrangian

    I have been reading a book on classical theoretical physics and it claims: -------------- If a Lagrange function depends on a continuous parameter ##\lambda##, then also the generalized momentum ##p_i = \frac{\partial L}{\partial\dot{q}_i}## depends on ##\lambda##, also the velocity...
  22. J

    I Hamiltonian in QM for QFT forces/fields effects

    In QM. Can you use the Hamiltonian (or kinetic plus potential energy) to describe the forces of nature that should supposedly use QFT or Lagrangian? I mean the fields have kinetic and potential energy components and what are the limitations in description and others if you only use them to...
  23. S

    The Eigenfunction of a 2-electron system

    Hello! I am stuck at the following question: Show that the wave function is an eigenfunction of the Hamiltonian if the two electrons do not interact, where the Hamiltonian is given as; the wave function and given as; and the energy and Born radius are given as: and I used this for ∇...
  24. A

    I Can I use the Schrodinger picture when the Hamiltonian is time-dependent?

    In the Schrodinger picture, the operators don't change with the time, but the states do. So, what happen if my hamiltonian depend on time? Should I use the others pictures in these cases?
  25. jleon008

    Heliocentric Coordinates for a 2 body problem and the Hamiltonian

    It seems as though in general, the equations of motion are described with two equations which result from the definition of a Hamiltonian problem, where the problems are of the form: $$\dot p=-H_q(p,q), \dot q=H_p(p,q)$$ It is a little confusing to me how the equations of motion go from two...
  26. wrobel

    Insights A Pure Hamiltonian Proof of the Maupertuis Principle - Comments

    Greg Bernhardt submitted a new blog post A Pure Hamiltonian Proof of the Maupertuis Principle Continue reading the Original Blog Post.
  27. N

    I What is the relationship between the Hamiltonian and Lorentz invariance?

    Hi, I hope this is in the right section. It's for EM which I guess is a relativistic theory but the question itself is not to do with any Lorentz transformations or anything similar. I'm reading through Jackson with my course for EM and I'm on the section where he is generalising the Hamiltonian...
  28. B

    Textbook for calculus of variations? Hamiltonian mechanics?

    I need to learn about Hamiltonian mechanics involving functional and functional derivative... Also, I need to learn about generalized real and imaginary Hamiltonian... I only learned the basics of Hamiltonian mechanics during undergrad and now those papers I read show very generalized version...
  29. N

    A Visualize the Hamiltonian

    "Once, Dirac asked me whether I thought geometrically or algebraically? I said I did not know what he meant, could he tell me how he, himself, thought. He said his thinking was geometrical. I was taken aback by this because Dirac, with his transformation theory, represented for my generation the...
  30. L

    A How to numerically diagonalize a Hamiltonian in a subspace?

    I want to exactly diagonalize the following Hamiltonian for ##10## number of sites and ##5## number of spinless fermions $$H = -t\sum_i^{L-1} \big[c_i^\dagger c_{i+1} - c_i c_{i+1}^\dagger\big] + V\sum_i^{L-1} n_i n_{i+1}$$ here ##L## is total number of sites, creation (##c^\dagger##) and...
  31. m4r35n357

    I Symplectic integrator, non-separable Hamiltonian

    I have been attempting to modify a symplectic integrator that I wrote a while ago. It works very well for "separable" hamiltonians, but I want to use it to simulate a double pendulum. I am using the Stormer-Verlet equation (3) from this source. From the article "Even order 2 follows from its...
  32. Physics Learner

    Second Quantized Minimal Basis Hamiltonian of H2

    Hi, I am really new in understanding second quantization formalism. Recently I am reading this journal: https://dash.harvard.edu/bitstream/handle/1/8403540/Simulation_of_Electronic_Structure.pdf?sequence=1&isAllowed=y In brief, the molecular Hamiltonian is written as $$\mathcal{H}=\sum_{ij}...
  33. m4r35n357

    Python More cool automatic differentiation (Hamiltonian)

    Well I think it is cool anyhow ;) Here is a dependency-free variable-order double pendulum simulation in about 120 lines of Python. Have you seen the equations of motion for this system? As usual, this is based on code that I have provided here, but trimmed for maximum impact. Can you see...
  34. Alex Petrosyan

    Relativistic Dynamics in Hamiltonian Formulation

    hi all! I’m trying to generalise the Caldeira-Leggett Hamiltonian (heat bath + particle) to the case of high velocities. Naturally, the multi-oscillator Hamiltonian needs to change and I have a gnawing suspicion that the multi-particle Hamiltonian is just the sum of single-particle hamiltonians...
  35. Teri

    I Hyperfine structure - Hamiltonian and bases

    Hi, could you please explain me, how to copmute the yellow parts? Thank you very much.
  36. QuasarBoy543298

    Hamiltonian mechanics - the independence of p and q

    in the Lagrangian mechanics, we assumed that the Lagrangian is a function of space coordinates, time and the derivative of those space coordinates by time (velocity) L(q,dq/dt,t). to derive the Hamiltonian we used the Legendre transformation on L with respect to dq/dt and got H = p*(dq/dt) -...
  37. QuasarBoy543298

    I Volume in phase space- Louviles theorem

    I was looking at the following proof of Louviles theorem : we define a velocity field as V=(dpi/dt, dqi/dt). using Hamilton equations we find that div(V)=0. using continuity equation we find that the volume doesn't change. I couldn't figure out the following : 1- the whole point was to show...
  38. MathematicalPhysicist

    How to simplify the diatomic molecule Hamiltonian using an expansion?

    Homework Statement I have the diatomic molecule hamiltonian given by: $$-\hbar^2/(2\mu)d^2/dr^2+\hbar^2\ell(\ell+1)/(2\mu r^2)+(1/4)K(r-d_0)^2$$ Now it's written in my solutions that if we put: $$K\equiv 2\mu \omega_0^2, \hbar^2\ell(\ell+1)/(2\mu d_0^4)\equiv \gamma_{\ell} K, r-d_0\equiv...
  39. O

    I Can Euler Integration Simplify Chaotic Systems?

    Hey, I have this chaotic system. It is a modified Hamiltonian Chaotic System and it is based on Henon-Heiles chaotic system. So I have this functions (as shown below). I want to know how can I make it as a discrete function. Like, how can I know the value for x dot and y dot. 1. Prefer to know...
  40. G

    A Diagonalization of Hubbard Hamiltonian

    Hi guys! I am starting to study Hubbard model with application in DFT and I have some doubts how to solve the Hubbard Hamiltonian. I have the DFT modeled to Hubbard, where the homogeneous Hamiltonian is $$ H = -t\sum_{\langle i,j \rangle}\sigma (\hat{c}_{i\sigma}^{\dagger}\hat{c}_{j\sigma} +...
  41. J

    Discrepancy in Lagrangian to Hamiltonian transformation?

    I know, $$ L=T-V \;\;\; \; \;\;\; [1]\;\;\; \; \;\;\; ( Lagrangian) $$ $$ H=T+V \;\;\; \; \;\;\;[2] \;\;\; \; \;\;\; (Hamiltonian)$$ and logically, this leads to the equation, $$ H - L= 2V \;\;\; \; \;\;\...
  42. M

    I Boltzmann equation and Hamiltonian

    Hello! I read today, in the context of DM, about the Boltzmann equation: $$L[f]=C[f]$$ where ##L[f]## is the Liouville operator (basically ##\frac{df}{dt}##), with ##f(x,v,t)## being the phase-space distribution of the system and ##C[f]## being the collision operator. I am a bit confused about...
  43. V

    Hamiltonian for a 1D-spin chain

    Homework Statement [/B] A 1D spin chain corresponds to the following figure: Suppose there are ##L## particles on the spin chain and that the ##i##th particle has spin corresponding to ##S=\frac{1}{2}(\sigma_i^x,\sigma_i^y,\sigma_i^z)##, where the ##\sigma##'s correspond to the Pauli spin...
  44. binbagsss

    Quick Question- Hamiltonian constant proof

    Homework Statement Show that if the Lagrangian does not explicitly depend on time that the Hamiltonian is a constant of motion. Homework Equations see below The Attempt at a Solution method attached here: Apologies this is probably a bad question, but just on going from the line ##dH## to...
  45. sams

    A Difference between configuration space and phase space

    Lagrangian Mechanics uses generalized coordinates and generalized velocities in configuration space. Hamiltonian Mechanics uses coordinates and corresponding momenta in phase space. Could anyone please explain the difference between configuration space and phase space. Thank you in advance for...
  46. digogalvao

    I Cyclic variables for Hamiltonian

    A single particle Hamitonian ##H=\frac{m\dot{x}^{2}}{2}+\frac{m\dot{y}^{2}}{2}+\frac{x^{2}+y^{2}}{2}## can be expressed as: ##H=\frac{p_{x}^{2}}{2m}+\frac{p_{y}^{2}}{2m}+\frac{x^{2}+y^{2}}{2}## or even: ##H=\frac{p_{x}^{2}}{2m}+\frac{p_{y}^{2}}{2m}+\frac{\dot{p_{x}}^{2}+\dot{p_{x}}^{2}}{4}##...
  47. thariya

    I The sign of coupling Hamiltonian in CQED

    Hi all, I've always regarded the coupling Hamiltonian for a bosonic cavity mode coupled to a two-level fermionic gain medium chromophore to be of the form, $$H_{coupling}=\hbar g(\sigma_{10}+\sigma_{01})(b+b^{\dagger})$$, where ##b## and ##b^{\dagger}## and annihilation and creation operators...
  48. Sagar Rawal

    Gauge Invariance in Hamiltonian

    Homework Statement Hello Everyone I'm wondering, why in below product rule was not used for gradient of A where exponential is treated as constant for divergent of A and only for first term of equation we used the product rule? Homework Equations https://ibb.co/gHOauJ The Attempt at a Solution
Back
Top