What is Magnetic: Definition and 1000 Discussions

Magnetism is a class of physical attributes that are mediated by magnetic fields. Electric currents and the magnetic moments of elementary particles give rise to a magnetic field, which acts on other currents and magnetic moments. Magnetism is one aspect of the combined phenomenon of electromagnetism. The most familiar effects occur in ferromagnetic materials, which are strongly attracted by magnetic fields and can be magnetized to become permanent magnets, producing magnetic fields themselves. Demagnetizing a magnet is also possible. Only a few substances are ferromagnetic; the most common ones are iron, cobalt and nickel and their alloys. The rare-earth metals neodymium and samarium are less common examples. The prefix ferro- refers to iron, because permanent magnetism was first observed in lodestone, a form of natural iron ore called magnetite, Fe3O4.
All substances exhibit some type of magnetism. Magnetic materials are classified according to their bulk susceptibility. Ferromagnetism is responsible for most of the effects of magnetism encountered in everyday life, but there are actually several types of magnetism. Paramagnetic substances, such as aluminum and oxygen, are weakly attracted to an applied magnetic field; diamagnetic substances, such as copper and carbon, are weakly repelled; while antiferromagnetic materials, such as chromium and spin glasses, have a more complex relationship with a magnetic field. The force of a magnet on paramagnetic, diamagnetic, and antiferromagnetic materials is usually too weak to be felt and can be detected only by laboratory instruments, so in everyday life, these substances are often described as non-magnetic.
The magnetic state (or magnetic phase) of a material depends on temperature, pressure, and the applied magnetic field. A material may exhibit more than one form of magnetism as these variables change.
The strength of a magnetic field almost always decreases with distance, though the exact mathematical relationship between strength and distance varies. Different configurations of magnetic moments and electric currents can result in complicated magnetic fields.
Only magnetic dipoles have been observed, although some theories predict the existence of magnetic monopoles.

View More On Wikipedia.org
  1. G

    I Magnetic Field vs Spacetime: Effects on Inertia Disk

    By following article a magnetic field can produce a least a minimum distortion in spacetime. If we have a inertia disk spinning 50% inside of a strong closed magnetic field may we suppose that we will create an unbalanced in the angular disc moment producing a propulsion without mass variation...
  2. PlanTer254

    B Magnetic fields attracting two disc-shaped magnets

    I had 2 small magnets in my mouth for distraction while working on something else,and I had this wierd question.the two magnets were not that strong,so just a force was easy to separate them with my teeth.then they would attract to be attached to each other and then the question hit me,the 2...
  3. alukhm

    Wood/Glass/Metal Magnet Inside a Shell containing Ferromagnetic Metal

    Hello all! I have a earring project with magnets involved but no magnet expert involved :( Here are a few stupid questions I hope someone can help us with! BACKGROUND: We are designing magnetic earrings. The earrings are meant to clamp the ear with 3 different levels of pressure. The magnetic...
  4. Lotto

    B What magnetic fields can this hollow rod shield?

    I suppose it can shield only the external magnetic field, not the field of the magnet itself. But I am not completely sure.
  5. Lotto

    How to calculate magnetic induction just beyond the end of the magnet?

    I know I should use a limit $$B=\lim_{r\to l}{\frac{\mu}{4\pi}\cdot \frac{4rml}{{\left({r}^2-l^2\right)}^2}},$$,but in Wolfram I get a weird solution. https://www.wolframalpha.com/input?i2d=true&i=Limit[Divide[4rl,Power[\(40)Power[r,2]-Power[l,2]\(41),2]],r->l] What is the solution? It...
  6. SR_0301

    I Question about orbital and spin magnetic dipole

    Hello guys, i want to ask you a question about orbital and spin dipole, and how this is going to influence diamagnetic or paramagnetic substances. So my question is: we know in a atom there is orbital and spin motion by electrons so possibly two magnetic dipoles. Is it correct to say that in...
  7. S

    I How do I visualize the magnetic field?

    Hi! So my question is this, I have done measurements with an magnetic field meter around a transformer from 0.5 meter away (then measure some points around) and then I moved out 0.5 meters and so on until I reached a nearby building. So my issue now is I want to visualize this to my customer...
  8. V

    Why does a diamagnetic rod align perpendicular to a magnetic field?

    I know that each material is made up of tiny magnets due to electrons orbiting the nucleus and also from electron spinning about its own axis. In ferromagnetic or paramagnetic rod these tiny magnets align with the applied field causing the net field in the rod to increase. But for diamagnetic...
  9. M

    I Fundamental - Magnetic fields generated by moving electrons

    Trying to understand something fundamental about how magnetic fields are generated by moving electrons in a conductor. I have read many forums, studied Emag and am left with more questions. Looking for some practical insight not Bio-Savart derivations, etc. These still do not explain why the...
  10. C

    I Is the magnetic moment of a hydrogen atom not equal to Bohr's magneton?

    Can you cite experiments where, in some excited states of a hydrogen atom, magnetic moment significantly differs from Bohr's magneton was detected? Correction for magnetic moment of nucleus is insignificant. Only experimental data, not theoretical forecasts. Starting from the experiments of...
  11. gentzen

    I Are there asymptotic QTF/QED states in a constant magnetic field?

    It is "easy" to produce experimental setups that could and should for all practical purposes be described as having a constant background magnetic field everywhere, especially in the "asymptotic region" where the detectors are located. You can do this both in vacuum, and inside a solid sample...
  12. guyvsdcsniper

    Determining Electric and Magnetic field given certain conditions

    I am unsure of my solutions and am looking for some guidance. a.)The real part of the wave in complex notation can be written as ##\widetilde{A} = A^{i\delta}##. Writing the Complex Wave equation, we have ##\vec E(t) = \widetilde{A}e^{(-kz-\Omega t)} \hat x##. Therefore the real part is ##\vec...
  13. JH_1870

    A Relationship between magnetic potential and current density in Maxwell

    I am currently studying to solve Maxwell's equations using FEM. I have a question about Maxwell's equations while studying. I understood that the magnetic potential becomes ▽^2 Az = -mu_0 Jz when the current flows only in the z-axis. I also understood the effect of the current flowing in a...
  14. J

    I Homopolar generator question: Magnetic “wake”

    So faradays paradox is often depicted as a circular copper disk on a shaft with a donut or toroidal magnet on one or either side of the disk. Spin the disk and magnets together voltage is produced. Since the magnets are rotating along their poles the orientation of the magnetic field compared...
  15. N

    I Exploring Magnetic Force: Magnet vs. Wires

    I understand the iron fillings become little magnets all pointing in the same north south direction similar to the spin aligned electrons in the permanent magnet. Similarly, a compass near a wire traces out the magnetic field lines ie North/South. My question is how do I reconcile the fact that...
  16. S

    B Lorentz Transformation of Electric & Magnetic Fields Visualized

    I made a tool for calculating and visualizing how the electric and magnetic fields transform under a Lorentz boost. Thought I'd share it here, in case anyone finds it interesting. https://em-transforms.vercel.app/
  17. C

    I Do objects of differing mass fall at the same rate in a magnetic field?

    Gravity isn't a force in the strictest sense of the word, yet magnetism is exactly that: a force. As is strong, EW, etc. Therefore, it's possible that the more massive magnetic object gets drawn to the center of a magnetic source at a faster rate than the less massive magnetic object. Discuss!
  18. thedubdude

    I Why does metal moving though a magnetic field slow down?

    A piece of metal moving West to East in a North to South fixed magnetic field slows down...but how? Yes of course eddy currents are set up in the metal and these currents generate their own magnetic field which somehow slows down the moving metal piece...but how does this actually slow the...
  19. besebenomo

    Magnetic flux with magnetic field changing direction

    Sorry if I post again about this topic (last time I promise!) but I still have some doubts regarding the concept of flux. This collection of problems I have quite standard but there are so many variations. Here is the circuit in question: Something tells me that I could write a function that...
  20. warrenchu000

    Why is magnetic field B along a straight wire circular not radial?

    Statement: The magnetic field around a straight wire carrying a current can be explained Relativistically by changing the inertial frame of reference to the frame of the moving electrons - i.e., a Lorentz contraction of the positive charges in the wire will give a denser concentration of the...
  21. besebenomo

    Moving bar enclosing a changing magnetic field generates a current

    The amplitude of ##\vec{B}## is given by: $$B(x) = B_{0} - B_{0} \frac{x}{2l}$$ for ##0 \leq 0 \leq 2l## This was my attempts at finding the flux of B: $$\Phi(B) = (B_{0} - B_{0} \frac{x}{2l})(2l-x(t))l = B_{0}2l^2-2B_{0}x(t)l+ B_{0}\frac{x(t)^2}{2}$$ and the current: $$ i = -\frac{d...
  22. besebenomo

    Magnetic flux of magnetic field changing as a function of time

    $$B(t) = B_{0} \frac{t^2}{T^2}$$ for ##0 \leq t \leq T## The issue here is more conceptual, because once I find the flux of B I know how to proceed to find the current. I got velocity (but it seems to me that it is the initial velocity), I could use it to find the time in function of space...
  23. P

    I Defining the Forces from Magnetic Fields and Electric Fields

    We define Electric Field Intensity vector at a point as the force experienced by a unit positive charge kept at a point. Is it correct to define B vector similarly that is, is B vector the magnetic force acting on an unit magnetic north pole and is it correct to call B vector Magnetic Field...
  24. V

    I Induced electric fields and induced magnetic fields confusion

    So changing magnetic fields induce electric fields (Faraday's law when the magnetic field is changed by either moving the source or by changing the current in the source that's causing the magnetic field, ie. we're not moving the conductor where an emf is induced so there's no f=qvXB). Also...
  25. P

    Induced EMF due to motion of a wire perpendicular to a magnetic field

    This question appeared in a university entrance exam.Basically, if magnetic flux passing through a surface of a loop changes over time ,only then e.m.f will be induced to that loop.But here only a straight line is used and there's no chance of forming any area.So by definition there's no chance...
  26. L

    B Calculating Force on an Iron Object with Magnetic Field

    I have a scenario where I would like to calculate the electronics needed to create a force (pull on) an iron object. The set up is a coil (solenoid) with a steel (iron) object. I use Maxwell's equation (Ampere's law) to estimate the magnetic field B of the solenoid. My question is, how to...
  27. L

    Conducting rod in equilibrium due to magnetic force

    I am having problems understanding point (b) so I would like to know if my reasoning in that part is correct and/or how to think about that part because I don't see how to justify the assumption ##v_y=0\ m/s##. Thanks. I set up the ##xyz## coordinates system in the usual way with ##xy## in the...
  28. X

    I Magnetic field strength of a stack of magnets

    I know that for a single cylindrical neodymium magnet, the formula $$ \displaystyle{\displaylines{B(z)=\frac{μ_0M}{2}(\frac{z}{\sqrt{z^{2}+R^{2}}}-\frac{z-L}{\sqrt{(z-L)^{2}-R^{2}}})}} $$ shows the relationship between the magnetic field strength and the distance between the magnet. I was...
  29. H Ucar

    A Magnetic bound state in classical mechanics

    Seven years ago, I wanted to share and discuss my experiments results there but it was not possible since there was no published peer review paper yet and apparently not fulfilling forum requirements. Now we have such a publication, but still not sure the subject can be discussed here. Anyway...
  30. B

    Velocity of a relativistic particle in a uniform magnetic field

    d(ɣmv)/dt = qvB (dɣ/dt)mv + ɣm(dv/dt) = qvB Substituting gamma in and using the chain rule, it ends up simplifying to the following: ɣ^3*m(dv/dt) = qvB Now, I am confused on how to solve for v.
  31. arjun_ar

    Calculate the magnetic field from the vector potential

    I am trying to derive radial and axial magnetic fields of a current carrying loop from its magnetic vector potential. So far, I have succeeded in deriving the radial field but axial field derivation gives me trouble. My derivation of radial field (eq 1) can be found here. Can anyone point out...
  32. bbbl67

    B Are magnetic fields generated through radio frequencies?

    I seem to hear about huge astronomical events that generate radio waves seem to come from objects with huge magnetic fields, such as neutron stars and black holes. Does that mean magnetic fields only come from the radio end of the spectrum, and not higher frequencies, like IR, UV, X-rays, etc?
  33. LCSphysicist

    EMF induced in a wire loop rotating in a magnetic field

    To solve this problem, we need to evaluate the following integral: $$\epsilon = \int_{P}^{C} (\vec v \times \vec B) \vec dl$$ The main problem is, in fact, how do we arrive at it! I can't see why a Electric field arises at the configuration here. The magnetic field of the rotating sphere is...
  34. dextercioby

    A First order electroweak correction to the g-2 magnetic moment

    We know that we need to go to 5th order in perturbation theory to match 10 decimals of g-2 for electron, theory vs. experiment. But let us not assume QED is pure and independent, but it's a lower energy limit of GSW (not Green-Schwartz-Witten from superstrings) electroweak theory. Has anyone...
  35. S

    I Magnetar Mystery: How Do Neutrons Generate a Magnetic Field?

    If a magnetar is a neutron star, how do the neutrons composing the star generate a magnetic field? A neutron has zero charge, so it generates no magnetic field.
  36. Adgorn

    Relativistic particle in uniform magnetic field (solution check)

    My solution was as follows: $$\frac {d\overrightarrow p} {dt}=q \frac {\overrightarrow v} {c}\times \overrightarrow B_0$$ The movement is in the ##[yz]## plane so ##|\overrightarrow v\times \overrightarrow B_0|=vB_0##, therefore: $$\biggr |\frac {dp} {dt}\biggr |= \frac {qvB_0} {c}.$$ On the...
  37. P

    I Exploring Newton's Third Law in an Imaginary Magnetic Field

    Hi, here's a theoretical problem that I am trying to find a satisfactory answer for. Imagine a coil that is temporarily switched on an off and generates a magnetic field that permeates through space. Now imagine a charged particle passing through this field, at time that the coil is already...
  38. A

    I Derivation of the magnetic flux in coaxial cable

    The magnetic flux ##\phi_m = \int{BdA}## The magnetic field of the coaxial cable B = ##\frac{I_{enc} \mu_0}{2\pi r}## since surface area of a cylinder = ##2\pi rdr L, dA = 2\pi L dr## where L is the length of the coaxial cable so ##\phi_m = \int{\frac{I_{enc} \mu_0}{2\pi r}2\pi L dr}##?
  39. Hasan2022

    COMSOL simulation of a 3D Ferrite Bar Numerical Model For Magnetic Flux

    Hi, I am willing to simulate a 3D ferrite bar transmitter and reciever where coupling coefficient k and Bt magnetic flux density on the each side uses the finite element method for solving partial differential equations. The Magnetic Fields module has equation (jωσ − ω2ε0εr)A + ∇ × H = Je...
  40. J

    The acceleration of protons using a changing magnetic field

    If we increase the magnetic field, the radius of the particle's circular path will decrease which increases the tangential acceleration. How do I find the tangential acceleration. Do I use derivatives?
  41. J

    A curved wire rotating in and out of a magnetic field

    If I'm correct then the maximum change in magnetic flux occurs when the semi circle crosses the point at which it's plane is parallel with the magnetic field and minimal when it crosses the point at which the magnetic flux is maximum ( perpendicular with the field). I'm having trouble writing a...
  42. A

    Calculating a large toroid's magnetic field

    ##B_0 = \frac{\mu_0(N)(I)}{2\pi r}## ##\frac{N}{2\pi r} = 200## ##B_{net} = B_0 + B_m = (1+X)\times B_0## Plugging in the numbers: ##B_0 = 4\pi\times 10^{-7}(200)(1.5) = 3.8\times 10^{-4}## ##B_{net} = (1+X)\times B_0 = (1+ 3\times 10^3)\times 3.8\times 10^{-4}## = 1.13 T But the answers says...
  43. J

    EMF generated in a blood cell by an oscillating magnetic field

    At first I tried plugging everything in with 60Hz in the numerator but that did not work. I was told to think about sinusoidal waves and derivates but I'm not sure how that works. Any ideas? Thanks a lot
  44. A

    I Does electron beam in empty space generate magnetic fields?

    Does electron beam in empty space generate magnetic fields around them just as with current in conductor. If yes, then is it experimentally proven that two parallel electron beam would attract each other.
  45. A

    Magnetic field generated by an infinitely long current-carrying wire

    Can someone explain how there can be a radial magnetic field? I thought the magnetic field was always tangent to the circle using the right hand rule where you wrap your fingers around the current and point your thumb in the direction of the current.
  46. J

    Find magnetic field at center of rotating sphere

    if a sphere rotates, it's like multiple currents going around in a circle. I can find the magnetic field of each of those currents at the center point of the circle and add them together. We can integrate with respect to y and R. y ranges from 0 to 5 cm away from the center of the loop and the...
  47. A

    Understanding Torque in a Magnetic Field with Loop

    I am confused about this, do the black arrows represent the direction of magnetic force? The torque ##\tau = -IABsin\theta##, where I = current A is area of loop and B is magnetic field strength and I am a little confused how ##\theta## here is 45 degrees when the angle between the normal for...
  48. Sunny Singh

    I Understanding Landau Levels for 3D Fermionic Gas in Magnetic Field

    I am a beginning graduate student and I've been assigned a paper which uses landau levels for 3d fermionic gas in uniform background magnetic field. I am having trouble finding a proper source which deals with solution of dirac equation in such a case. With the two papers that i have found which...
  49. EmmanKR

    Finding the Frequency Domain and Time Domain magnetic field

    I was wondering if anyone could walk me though a better explanation on how to get the given results for these two questions. The solutions posted by my professor aren't really clear to me so if anyone is able to better explain how to get the solution it would be much appreciated!
Back
Top