What is Mechanics: Definition and 999 Discussions

Mechanics (Greek: μηχανική) is the area of physics concerned with the motions of physical objects, more specifically the relationships among force, matter, and motion. Forces applied to objects result in displacements, or changes of an object's position relative to its environment.
This branch of physics has its origins in Ancient Greece with the writings of Aristotle and Archimedes (see History of classical mechanics and Timeline of classical mechanics). During the early modern period, scientists such as Galileo, Kepler, and Newton laid the foundation for what is now known as classical mechanics.
It is a branch of classical physics that deals with particles that are either at rest or are moving with velocities significantly less than the speed of light.
It can also be defined as a branch of science which deals with the motion of and forces on bodies not in the quantum realm. The field is today less widely understood in terms of quantum theory.

View More On Wikipedia.org
  1. Al-Layth

    I Comprehensive List of Mechanics Formulations

    beyond 1.) the Newtonian formulation 2.) The lagrangian formulation 3.) The Hamiltonian formulation What other formulations are there
  2. AJSayad

    Engineering Experimental Fluid Mechanics Vs. Computational Fluid Mechanics

    Hi everyone, I just started graduate school and I've been working in an experimental fluid mechanics lab. We have a shock tube and run tests on studying supersonic and hypersonic airflow under different conditions. We use Schileren imaging and transducers to take measurements during tests. We...
  3. sol47739

    I Exploring Electromagnetism & Quantum Mechanics

    In classical electromagnetism I think I have understood the following(please correct me if something is wrong): A charge produces an electric field, a charge moving with constant velocity produces a magnetic field, an accelerating charge emits electromagnetic radiation. In radio antennas this is...
  4. E

    I Understanding No Energy Degeneracy in Sakurai's Quantum Mechanics

    Hello, I'm hoping someone can help me understand a statement in Sakurai Modern Quantum Mechanics (3rd edition). In particular, in the section that describes free particle in infinite spherical well (page 198, section 3.7.2), after the text has shown that for a given ##l## value, the energy...
  5. Graham87

    Quantum Mechanics - Matrix representations

    I have found J^2 and Jz, but I am not sure how to find Jx and Jy. I’m thinking maybe use J+-=Jx+-iJy ? But I get unclear results. Thanks!
  6. A

    Fluid mechanics - Additional liquid capacity due to compression

    A cylindrical tube (diameter = D, width = L) is completely filled with a liquid (density = ρ). A pump pressurizes the system with a pressure P. Consequently, 1) the solid tube is compressed and deformed according to Hooke's law (σ = ε.E), and 2) the liquid is compressed and deformed, following...
  7. mopit_011

    B Equivalence of Frictional and Applied Force

    The following passage is from Halliday Resnick Krane in Chapter 3 which is about dynamics in one dimension. "We can measure frictional forces. By placing the body on a horizontal surface where it experiences a frictional force, we could attach a spring and pull the body with just the right...
  8. Graham87

    Intro to quantum mechanics - Spin and linear algebra

    So this expression is apparently in Sz basis? How can you see that? How would it look in Sy basis for example? The solution is following. They are putting Sz as a basis, bur how do you know that Sz is the basis here? Thanks
  9. Graham87

    Intro to Quantum Mechanics - Formalism normalisation

    I can't figure out how they get i/sqrt(2) for normalisation of c1. Why is it a complex number? If I normalise c1 I just get 1/sqrt(2) because i disappears in the absolute value squared. Thanks
  10. sachin

    Motion of center of mass under gravity

    While solving this question I could not figure out the concept of two blocks sticking together. the question is, Two particles A and B of masses 1 kg and 2 kg respectively are projected in the directions shown in figure with speed uA =200m/s and uB =50m/s. Initially they were 90m apart. They...
  11. Kinetic cyclic scissors

    Kinetic cyclic scissors

    Fun with tiled cyclic quadrilaterals
  12. G

    I At which point is gravity inconsistent with quantum mechanics?

    I'd like to understand how gravity does not combine with quantum mechanics. At least there is no accepted theory of quantum gravity, so I assume it is not solved? I'm only starting to learn QFT and eventually GR. Maybe, someone can already outline where those theories fail to combine and comment...
  13. SaintRodriguez

    Please help me pick a topic for an essay about classical mechanics

    I was wondering if someone can telling me a topic about classical mechanics which I can write an essay. First I thought to write about Legendre transformation, but I guess that is very general. Also, if someone can tell me some tips to write an scientific essay I'll be so glad.
  14. Graham87

    Intro Quantum Mechanics - Dirac notations

    I am learning Dirac notations in intro to quantum mechanics. I don’t understand why the up arrow changes to down arrow inside the equation in c). My own calculation looks like this:
  15. Graham87

    Quantum mechanics - Find S_x and S_y

    I have a lecture slide that shows how to find S_x and S_y. I get all the steps except the last row. Where did 1/2 come from? I think my linear algebra needs polishing. Thanks!
  16. bigmike94

    Prerequisites for John Taylor classical mechanics

    Inside the textbook, the prerequisites state first year mechanics and some differential equations, although it continues to say the differential equations can be learned as you’re working your way through the book, as differential equations were basically “invented” to be used for applied...
  17. S Holtom

    B Celestial mechanics: Why is my planet orbiting faster and faster?

    I've tried to make a "naive" implementation of a planet orbiting a gravitational point source, in Processing (basically Java). Gravity is a constant, and adds to the planet's velocity inversely proportional to the square of distance. I start the planet off with a tangential velocity. I get an...
  18. H Ucar

    A Magnetic bound state in classical mechanics

    Seven years ago, I wanted to share and discuss my experiments results there but it was not possible since there was no published peer review paper yet and apparently not fulfilling forum requirements. Now we have such a publication, but still not sure the subject can be discussed here. Anyway...
  19. Physicsphysics

    I Understanding Classical Mechanics: Acceleration

    I'm reading once again through Landau-Lifchitz and I am stuck on the first page! I can't wrap my head around why we only need to define the coordinates and velocities to determine the acceleration? Surely if we only know those two in a single point in time, that's not enough to determine an...
  20. J

    I Black hole singularity vs. quantum mechanics

    I'm wondering about some aspects about black holes (BH) and singularities, but since all my questions have to do mostly with quantum mechanics, I placed this thread in here. OK, let's assume there IS a singularity in the middle of a BH. A) Pauli exclusion principle (PEP) says no two fermions...
  21. T

    What is a recommended textbook for solid mechanics?

    Summary: In need of a textbook on solid mechanics Hello, I was asked to teach a class in FE analysis (this is not the issue) for solid mechanics (and, specifically, plane stress and strain) The issue is that some students will be deficient in solid mechanics (long story, I will have the time...
  22. L

    Moment of inertia of a uniform square plate

    I placed my Oxy coordinate system at the center of the square, the ##x##-axis pointing rightwards and the ##y##-axis pointing upwards. I divided the square into thin vertical strips, each of height ##h=2(\frac{L}{\sqrt{2}}-x)##, base ##dx## and mass ##dm=\sigma h...
  23. D

    I "No objective reality" in quantum mechanics?

    As per title and the TL;DR, I'm curious if there could be some truth in these statements of the headlines I had read recently or are they just sensationalist fluff. Personally, I find these statements very hard to believe. In fact, impossible to believe. But I'm not a QM expert, not even an...
  24. L

    A spring, disk and pulley system

    (a) By setting up a coordinate system with the x-axis pointing to the right and the y-axis pointing downward we have ##\begin{cases}-kx_{eq}+T_1+F_{s}=0\\ -RF_{s}+rT_1=0\\ r_p (T_2-T_1)=0\\ -T_2+mg=0\end{cases}\Rightarrow x_{eq}=\frac{mg}{k}\left(1+\frac{r}{R}\right)## which coincides with the...
  25. A. Neumaier

    A Exploring the Limits of Quantum Mechanics: David Wallace's Manuscript (2022)

    David Wallace, The sky is blue, and other reasons quantum mechanics is not underdetermined by evidence, Manuscript (2022). arXiv:2205.00568. From the Abstract: ''I argue that there as yet no empirically successful generalization of'' [Bohmian Mechanics and dynamical-collapse theories like the...
  26. S

    A How does Bohmian Mechanics actually replicate QM?

    I was recently trying to understand how Bohmian Mechanics could model quantum theory. In an old lecture of Sidney Coleman's called "Quantum Theory with the Gloves off" available here: https://www.damtp.cam.ac.uk/user/ho/Coleman.pdf He shows with a "physicist's proof" that QM predicts truly...
  27. Graham87

    Quantum mechanics - finite square well

    In a) I get that T should be largest where V_0 is least wide, because when V_0 is infinitely wide the particle would be fully reflected. But I don't get how height in b) and energy levels height in c) correlates to T and R. Is it because of their k? I get the opposite answer from the correct...
  28. Graham87

    Quantum mechanics - infinite square well problem

    I have solved c), but don’t know how to solve the integral in d. It looks like an integral to get c_n (photo below), but I still can’t figure out what to make of c) in the integral of d). I also thought maybe you can rewrite c) into an initial wave function (photo below) with A,x,a but don’t...
  29. LCSphysicist

    Statistical mechanics and problem with integrals

    So we have a system of N non interacting particles, on a d-dimensional space, the system is in contact with a bath of temperature T. The hamiltonian is $$H = \sum_{l = 1}^{N} (A_{l}|p_{l}|^{s}+B_{l}|q_{l}|^{s})$$. What is the avarage energy? Now, i have some problems with statistical...
  30. A

    Engineering Need Advice on Fundamentals of Fluid Mechanics Textbook

    I would like to buy a Fundamentals of Fluid Mechanics for Engineer textbook. I have 2 options, they are: 1. https://www.amazon.com/dp/0133521702/?tag=pfamazon01-20 2. https://www.amazon.com/dp/0132788128/?tag=pfamazon01-20 Can someone please tell me which one of above Fluid Mechanics textbook...
  31. tomceka

    How does the accuracy of the clock change when the spring stretches?

    A longer pendulum swings slower. So changing the length l of the pendulum changes the period T, which affects the timekeeping accuracy. But the problem is talking about the body on the spring, not the string. So the second formula cannot be applied here directly and I don't know how to progress...
  32. bigmike94

    I Topics covered in John R Taylor Classical mechanics

    I can’t find the chapter list online, does anyone know what topics are covered in John Taylor’s classical mechanics? Would it be similar to what’s covered in Newtonian mechanics, but obviously more advanced. Cheers in advance 👍
  33. C

    Numerical Methods for Learning Orbital Mechanics

    I'm interested in learning orbital mechanics but I haven't taken a class in numerical methods yet. Do I really need to take a whole class in numerical methods before learning orbital mechanics, or can I get by if I self-learn a smaller portion of the syllabus of a numerical methods class? If so...
  34. ROOT0X57B

    Force of brake pads on a wheel

    [Mentor Note -- thread moved from the technical forums to the schoolwork forums] I have a hollow-cylinder wheel model, braked with brake pads located at a distance d of the wheel's center axis. The brake pads have a contact area S. They are also forced towards the wheel with a pressure p. The...
  35. gremory

    A Power series in quantum mechanics

    Just earlier today i was practicing solving some ODEs with the power series method and when i did it to the infinite square well i noticed that my final answer for ##\psi(x)## wouldn't give me the quantised energies. My solution was $$\psi(x) = \sum^{\infty}_{n=0} k^{2n}(\cos(x) + \sin(x))$$...
  36. Lynch101

    B Statistical Independence in Quantum Mechanics

    Very basic question here, about statistical independence in quantum mechanical experiments. The quote from PD below is what prompted the question. When we talk about "some kind of pre-existing correlation" are talking about a simple correlation in the sense of the correlation of sunglasses and...
  37. bigmike94

    Need to cut back on the time I spend self-studying each Intro Mechanics chapter

    These are all the chapters for introductory mechanics in my textbook. What I have been doing is reading the chapter then following it up with watching a tonne of lectures and worked examples on that topic and attempting to do the problems. I’m on Applying Newton’s laws and I’ve been studying it...
  38. A

    I Rigid body mechanics and coordinate frames

    Hello all, I have some issues understanding the inertial-frame (or global-frame, G-frame) versus the body-frame (B-frame) when it comes to simulating the motion of a rigid body in 2 dimensions (planar body mechanics) in a system of ODEs. I have been self-learning from textbooks on simulating...
  39. newbie1127

    Engineering Moments problem -- One point load is given on a table

    I have tried solving this by splitting the load into two parallel coplaner loads as the Hint below the question suggests but while i was computing the values i realized that, i'll have 4 variables with only 3 equations. two forces and the two distances to forces from their respective axes. i've...
  40. Pipsqueakalchemist

    Mechanics of machine force analysis with analytical method

    So I was looking at this example problem in my textbook and I don’t understand how they got -168.1 degrees. The part I’m confused with is the first part of the 2nd picture, there’s a coma in the inverse tan, I don’t know what that means.
  41. P

    A Position basis in Quantum Mechanics

    Can I conceive a countable position basis in Quantum Mechanics? How can I talk about the position basis in the separable Hilbert space?
  42. D

    A classical mechanics problem involve rotating

    I came up with these: (especially not sure if second is right)
  43. N

    A-level Maths Mechanics: Prevent Block from Sliding Down Inclined Plane

    The best I could do was draw a forces diagram. I know that friction would be working up when the block is on the point of slipping down the plane and friction will be acting down the slope against the direction of motion when the block is on the point of slipping up the slope. (not even sure if...
  44. A

    A An ab initio Hilbert space formulation of Lagrangian mechanics

    I want to share my recent results on the foundation of classical mechanics. Te abstract readWe construct an operational formulation of classical mechanics without presupposing previous results from analytical mechanics. In doing so, several concepts from analytical mechanics will be rediscovered...
  45. mohamed_a

    I Classical analogy approach to quantum mechanics

    I have read about several approcahes to bypass some classical restrictions to quantum facts such as the electron being in a torus-like shape to avoid ,the greater than speed of light, rotation paradox . Could you recommend websites , sources or books that give good classical analogy to quantum...
  46. G

    What mistake did I make in finding the reaction at hinge A?

    A very simple (I thought!) question: I'm just looking at the first part, finding the reaction at the hinge A. Here is my annotated diagram, with the reaction and A resolved into it's X and Y components, the force at E labelled as Fe and the length of ED labelled as L. Considering the body...
  47. K

    I Particle on a sphere problem in quantum mechanics and its solution

    To solve a particle on a sphere problem in quantum mechanics we get the below equation :##\left[\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d}{d \theta}\right)-\frac{m^{2}}{\sin ^{2} \theta}\right] \Theta(\theta)=-A \Theta(\theta) ## To solve this differential equation, we...
  48. Franklie001

    Engineering Fluid mechanics question and the Bernoulli Equation

    Good afternoon, I am struggling to find the solution at Q2 and Q3. For Q2 the absolute pressure at point 1 is at the bottom of the tank, so do i need to use the formula P=Patm+qgh ? If using this formula I've got a bigger number than 100Pa. Same issue for Q3, isn't the pressure at point 2...
Back
Top