Homework Statement
a = 1/sqrt(29) * (-2*sint, 0, -2*cost)
length of a is?
Homework Equations
The Attempt at a Solution
ignoring 0, we have sqrt{[(-2*sint)/sqrt(29)]^2 + [(-2*cost)/sqrt(29)]^2}. I get 2/sqrt(29) but answer is [2*sqrt(2)]/sqrt(29). Can anyone do this step by step...
Homework Statement
x = (-4\pisin\pit, 4\picos\pit, 1)
what is the length of x?Homework Equations
The Attempt at a Solution
Well, I do realize that length of something is calculated by sqrt(x^2 + y^2) etc.
However, when I plug in the numbers above, I get sqrt(16\pi^3 + 1), but the answer is...
using identities:
cos(3x) = cos(2x+x) = cosx cos2x - sin^2x sinx
cos(x) = cos(2x-x) = cosx cos2x + sin^2x sinx
2nd term cancels out and we get 2cosxcos2x at the bottom. I got some help from my TA and solved it, thanks for your help!
Thank you for your reply.. I worked out a new solution, can u see if anything's wrong?
\int \frac{dx} {cosx-cos3x} =
\frac{1}{4} (-(\frac{1}{2}) cot(\frac{x}{2}) - ln(cos(\frac{x}{2}) - sin(\frac{x}{2})) + ln(cos(\frac{x}{2}) + sin(\frac{x}{2}) - (\frac{1}{2}) tan(\frac{x}{2})) + C
multivariable calculus II, I've been away from math for a long time and this is embarrassing.. anyways, ur answer = mine (plugged in few numbers to confirm), thanks all!
Homework Statement
\int dx/(cosx + cos3x)
Homework Equations
The Attempt at a Solution
Not sure if I'm doing this right.
1/cosx + cos3x = 1/2cosx * cos2x = cosx/cosx * 2cosxcos2x = cosx/2cos^2xcosx = (1/2)*(cosx)/[(1-sin^2x)(1-2sin^2x)]
then we let t = sinx and get \int dx/(cosx...
Homework Statement
derivative of x*sqrt[x/(2-x)]
Homework Equations
The Attempt at a Solution
my friend got 1/(2-x) and I got {-(x-3)*[-x/(x-2)]^3/2}/x. Who's right?
you are right, my mistake
I can show that with intuition and a sketch of plane/line but not sure how I should go about proving it formally.. maybe this Q is that simple and I'm overreacting
Homework Statement
Let r be a line and pi be a plane with equations
r: P + tv
pi: Q + hu + kw (v, u, w are vectors)
Assume v · (u x w) = 0. Show that either r ∩ pi = zero vector or r belongs to pi.
Homework Equations
n/a
The Attempt at a Solution
I get the basic idea behind it...