Recent content by unified

  1. U

    I Why are rotated parallel axes still parallel?

    Yes, that's correct. My motivation for asking this question is that the popular derivation of the formula for a generalized Lorentz transformation uses a rotation of the axes in this way, and it's assumed that they remain parallel. Let me clarify. Suppose S and S' have axes aligned with...
  2. U

    I Why are rotated parallel axes still parallel?

    I tried posting this on the physicsstackexchange, but wasn't making any progress in understanding what's going on. Suppose the axes in two coordinate systems S, S' are parallel. Now, suppose I rotate S through some angle ##\theta## and also rotate S' through the same angle ##\theta## It's not...
  3. U

    What Explains the Lack of Current in a PN Junction at Equilibrium?

    phyzguy, A sketch would include four currents, two from the field (electrons move against the field, holes with the field) and two due to random thermal motions (electrons from P to N, holes from N to P). In equilibrium these effects cancel.
  4. U

    What Explains the Lack of Current in a PN Junction at Equilibrium?

    Consider a PN junction doped with say phosphorous on the N side, and Boron on the P side. Initially, there is an opportunity for the electrons just below the N conduction band to drop to the lower available energy states just above the P valence band. This leaves the N side positively charged...
  5. U

    I Phase Speed of Wave in non-relativistic Doppler Shift Derivation

    To answer my own question, we are comparing the frequency measured by the ground observer -- who is at rest relative to the medium air -- with that measured by an observer moving with the siren and at rest relative to the air. Since they are both at rest relative to the air, they will measure...
  6. U

    I Phase Speed of Wave in non-relativistic Doppler Shift Derivation

    Consider the situation where an observer at rest on the ground measures the frequency of a siren which is moving away from the observer at speed ##v_{Ex}##. Let ##v_w## be the speed of the sound wave. Let ##\lambda_0##, ##f_0##, ##\lambda_D##, and ##f_D## be the wavelengths and frequencies...
  7. U

    Generalized Lorentz Transformation

    If what I have is a valid transformation, then I'm confused about what is calculating. Given the coordinates in S, does it give the coordinates in S(bar)?
  8. U

    Generalized Lorentz Transformation

    I noticed that of course. But, isn't it true that the matrix gives S(bar) in terms of S? I don't see how the logic could be wrong. We give S(bar) in terms of S' and S' in terms of S, thus S(bar) in terms of S. I agree the formula is not a boost, but isn't it still correct?
  9. U

    Generalized Lorentz Transformation

    Summary: The problem is to generalize the Lorentz transformation to two dimensions. Relevant Equations Lorentz Transformation along the positive x-axis: $$ \begin{pmatrix} \bar{x^0} \\ \bar{x^1} \\ \bar{x^2} \\ \bar{x^3} \\ \end{pmatrix} = \begin{pmatrix} \gamma & -\gamma \beta & 0 & 0 \\...
  10. U

    The Angular Momentum of an Electric and Magnetic Charge

    The formula for the integral is correct and produces the correct angular momentum. Yet, using the other coordinate system, I'm left with an integral which is divergent according to Mathematica. I mean the system with the origin as the midpoint between the charges. You can try writing down the...
  11. U

    The Angular Momentum of an Electric and Magnetic Charge

    Excellent answer, however in your example of the point mass, you are finding the angular momentum relative to 1. Where the particle itself is by placing it at the origin. 2. Some other location. In my example, I found the angular momentum relative to 1. The location of the electric charge. 2...
  12. U

    The Angular Momentum of an Electric and Magnetic Charge

    Relevant Equations: Angular momentum density stored in an electromagnetic field: $$\vec{l}_{em} = \epsilon_0[\vec{r} \times (\vec{E} \times \vec{B})]$$ Electric field of an electric charge: $$\frac{q_e}{4\pi\epsilon_0}\frac{r - r'}{|r - r'|^3}$$ Magnetic field of a magnetic charge...
  13. U

    Current induced from a changing magnetic field

    This question is motivated by Problem 7.12 in Griffiths Electrodynamics book. I have not included it in the homework section, because I have already solved it correctly. However, I question whether my solution which agrees with the solution's manual is correct. Relevant Equations: $$\Phi =...
  14. U

    A simple Proper Time Calculation

    Integral updated to include a dt term.
  15. U

    A simple Proper Time Calculation

    Thanks for taking a look at it. The dimensions are correct. I'm using relativistic units, so |a| has units of 1/s. I'll email the professor and see if he is in agreement with our answers.
Back
Top