EngageEngage
- 203
- 0
Homework Statement
\int\int{\frac {x}{\sqrt {1+4\,{x}^{2}+4\,{y}^{2}}}}dS
Where S is the parabaloid z = 25 - x^{2} -y^{2} that lies within the cylinder x^{2}+(y-1)^{2}=1
The Attempt at a Solution
First i use the following:
{\it dS}=\sqrt {1+{\frac {{{\it df}}^{2}}{{{\it dx}}^{2}}}+{\frac {{{<br /> \it df}}^{2}{\it }}{{{\it dy}}^{2}}}}dA
(**The above derivatives are not second derivatives, it should be each derivative squared)
to find
{\it dS}=\sqrt {1+4\,{x}^{2}+4\,{y}^{2}}dA
my integral then simplifies to the following, using polar coordinates and the following parametric equations
x = cos(\theta),and, <br /> y = sin(\theta) + 1, and, dA = rdrd\theta
\int\int cos(\theta) r dr d\theta
This is where my trouble starts -- the integral is easy to evaluate, but I don't know how to set up my boundaries so that I am in fact integrating around a cylinder that has been shifted up in the xy plane.
The limits I would use (but which i do not think are right) are as follows:
2\pi\geq\theta\geq0
1\geq r \geq 0
once again, these limits do not take into account the translation of the cylinder on the xy plane. If anyone oculd please tell me where I went wrong or what I should do I would appreciate it greatly.
Last edited: