A transpose of a nonsingular matrix is nonsingular

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Matrix Transpose
Dustinsfl
Messages
2,217
Reaction score
5
A transpose of a nonsingular matrix is nonsingular.

This is true; however, how can this be done without using determinants?

I know how to do this with determinants so please don't inform how to do this with determinants.
 
Physics news on Phys.org


Use (AB)T = BTAT
 


Thanks got it.
 


:smile:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top