SinghRP, the following thread, where Q-reeus and I have been discussing the effects of spacetime curvature around a gravitating body on radial vs. tangential distance measurements, might also be worth a look:
https://www.physicsforums.com/showthread.php?t=541317
It's also worth noting that there are some general issues with the way your question is posed, which may be of interest:
(1) What is the rod's state of motion? Usually, unless otherwise specified, it is assumed that the rod is "hovering"--that is, that it remains at a constant radial coordinate r. But this requires the rod to accelerate, in order to remain at a constant height against the pull of gravity. So if you want to see any effects of spacetime curvature on the rod's length, you have to first factor out the effects of the acceleration.
(2) Also, the usual argument for "length contraction" of a rod placed radially in a gravitational field is based on the metric coefficient g_rr in Schwarzschild coordinates being greater than 1, and getting larger as the radial coordinate r gets smaller. But this is not true in other coordinates; for example, in Painleve coordinates, g_rr is 1. This means, for example, that a rod freely falling towards the gravitating body, instead of "hovering" at a constant radial coordinate, will *not* see any "length contraction" even if the usual argument is correct.
(3) How is the "length" of the rod to be measured? The "obvious" way to do it is to make marks on the rod while the rod is very far away from all gravitating bodies, so spacetime in its vicinity can be assumed to be flat, and then measuring the distance between the marks once the rod is lowered into the gravity well and placed radially. But this begs the question, how do we measure the distance between the marks? We could use another rod, but the same question would arise for it. Or we could use light, say a laser rangefinder at one end of the rod and a mirror at the other, but gravity affects light too. There is simply no "distance measure" we can use that is unaffected by gravity, so whatever effect gravity has on the rod, it will have on the distance measure too.
(4) There is another way to judge the rod's length that avoids the above problem, by measuring stresses in the rod (or some other frame-invariant observable). For example, I make marks on the rod in some region of spacetime that is practically flat, after verifying that there are no measurable stresses in the rod. Then I place the rod alongside a second identical rod with identical marks on it, also unstressed. Then I place the first rod under known stresses, and measure its marks against the marks on the second, unstressed rod. This allows me to calibrate the rod's stress-strain ratio--i.e., how the distance between its marks changes with stress.
Now, having done all this, I lower the rod into the gravity well and place it radially. But GR predicts that, when I do this, I will measure *no* stress on the rod! (Strictly speaking, I will measure some stress due to the acceleration the rod has to sustain to "hover" at a constant radial coordinate, but we already talked about that above; once we correct for that, there will be no measurable stress in the rod. There may also be effects of tidal gravity, which I don't think we need to go into detail about here; they would need to be factored out the same way acceleration is.) When people in those various threads that were linked to above talk about there being no locally measurable effects of the difference in metric coefficients (radial vs. tangential, in Schwarzschild coordinates), this is the sort of thing they're talking about: whenever you look at a frame-invariant, physical observable, locally, you find that there is *no* difference radial vs. tangential.
It's also worth nothing that the case of "time dilation" in a gravity well is somewhat different, because there is a frame-invariant physical observable we can use to measure it--the gravitational redshift/blueshift between observers "hovering" at different heights in the field.