An Experiment Consists of Pulling a Heavy Wooden Block Across a Level Surface

AI Thread Summary
The experiment involves pulling a heavy wooden block across a level surface while measuring the force and acceleration. The recorded data shows a consistent increase in force and corresponding acceleration values. The spring force is not constant across trials, but the friction force is assumed to remain the same. To analyze the data, it is suggested to plot force against acceleration, which should yield a linear relationship where the slope represents the mass of the block and the y-intercept indicates the friction force. Understanding these relationships is crucial for determining the best value for the mass of the block from the provided options.
jli10
Messages
6
Reaction score
0

Homework Statement


An experiment consists of pulling a heavy wooden block across a level surface with a spring force meter. The constant force for each try is recorded, as is the acceleration of the block. The data are shown below:

Force F in Newtons: 3.05 | 3.45 | 4.05 | 4.45 | 5.05
acceleration a in meters/second^2: 0.095 | 0.205 | 0.295 | 0.405 | 0.495

(The above is supposed to be a table where every force corresponds with a different acceleration.)

Homework Equations


ƩF=ma
F_f(friction force)=μN

The Attempt at a Solution


So I don't really what the constant force is here. Is it the spring force, and if it is, should I use the formula F=kx? Well, I drew the free-body diagram and I got a couple of things. In the vertical direction, there is no acceleration so the normal force N is equal to mg. In the horizontal direction, I got: \sum{F} = ma = F_s - F_f = F_s - (\mu)(N) = F_s - (\mu)(mg) \Rightarrow a = \frac{F_s}{m} - (\mu)(g). Where do I go from here, and more specifically, how do I incorporate the table values into my solution?
 
Physics news on Phys.org
The spring force is a variable force, not a constant. If you plot force vs. displacement for a spring force it is a line F=kx where x is the displacement from equilibrium and k is the slope (spring constant).

The data you present also shows increasing force. It's also not clear what the object of the problem is.
 
Sorry, I forgot to include the question statement:
Which is the best value for the mass of the block?
a) 3 kg
b) 5 kg
c) 10 kg
d) 20 kg
e) 30 kg

Thanks for your reply AdkinsJr. So if the spring force is not the specified constant force in the problem, what exactly is? Also, if the force is supposedly "constant," then why are the values in the table increasing? I'm so lost right now... :confused: Any further help would be appreciated.
 
Graph force vs acceleration. Make sure you start at 0 on both axes when you draw the graph. In experiments, you always hope for a straight line - you have one here. So you can write an equation for it easily. The equation for a straight line is y = mx+b, or so they teach in grade 9 math where you always graph y vs x. Instead of x, you have "a" for acceleration. Instead of y, you have . . .
Make those changes in your equation. The "m" in the formula represents slope; you can get the number for that off your graph. The "b" represents the y-intercept (where the line hits the vertical axes, so you can read that number off your graph.

After the experimental work is done, consider the theory. Do you have any formulas relating F and a? Good old F = ma should apply to this situation but it is like y = mx with a zero vertical intercept so it doesn't quite work. It is as if you have a little something extra added to the ma or taken away from the F in this case. That something extra has units of force. Any forces involved here other than the one you measure with the spring scale? The ma is actually the net force that causes the acceleration - what is left after all forces are combined. See what you come up with!
 
jli10 said:

Homework Statement


An experiment consists of pulling a heavy wooden block across a level surface with a spring force meter. The constant force for each try is recorded, as is the acceleration of the block. The data are shown below:

Force F in Newtons: 3.05 | 3.45 | 4.05 | 4.45 | 5.05
acceleration a in meters/second^2: 0.095 | 0.205 | 0.295 | 0.405 | 0.495

(The above is supposed to be a table where every force corresponds with a different acceleration.)

Homework Equations


ƩF=ma
F_f(friction force)=μN

The Attempt at a Solution


So I don't really what the constant force is here. Is it the spring force, and if it is, should I use the formula F=kx? Well, I drew the free-body diagram and I got a couple of things. In the vertical direction, there is no acceleration so the normal force N is equal to mg. In the horizontal direction, I got: \sum{F} = ma = F_s - F_f = F_s - (\mu)(N) = F_s - (\mu)(mg) \Rightarrow a = \frac{F_s}{m} - (\mu)(g). Where do I go from here, and more specifically, how do I incorporate the table values into my solution?
The spring force, Fs, was (hopefully) constant during anyone trial, but was different from one trial to the next.

The force of friction, Ff, should have been the same across all of the trials.

The data table suggests plotting Fs versus acceleration, a.

Rewriting your equation, \displaystyle ma = F_s - F_f as
\displaystyle F_s = ma + F_f​
I suggest putting Fs on the vertical axis, and a on the horizontal axis.

Hopefully, your data will nearly fall along a straight line. If so, the the slope should be the mass of the block, and the y-intercept should be the force of friction.

If not, then there was a problem with the experiment.
 
The data do fall fairly close to a straight line.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top