Poynting Vector - Finding stored energy per unit length of a solenoid

physicsoxford
Messages
4
Reaction score
0

Homework Statement



long solenoid of n turns per unit length is wound upon a cylindrical core of radius a
and relative permeability. The current I through the solenoid is increasing with time t at a
constant rate. Obtain expression for the rate of increase of stored energy per unit length in the core
of the solenoid
(a) from the inductance per unit length of the solenoid, and dI=dt.
(b) from the energy associated with the fields internal to the solenoid core.
(c) by integration of the Poynting vector over an appropriate surface.

Homework Equations



None are given but I believe this is what should be considered:

-∂/∂t ∫[ εE2/2 + B2/2μ ] dv = ∫ Jf dot E dv + ∫ E cross H da

Ampere's Law

E cross H = S

The Attempt at a Solution



Using Ampere's Law: B=μnI

L = flux/I
L = μn2lA Where l is some length and A is a surface


Part A)

∅ = L dI/dt

∅ = μn2lA dI/dt

U = Q∅/2

U/dt = μn2lA (dI/dt) (Q/dt) (1/2)

U/dt = μn2lA (dI/dt) I (1/2)

This just does not seem right to me??

Part B)

U = ∫B2/2μ dv

U = ∫(μnI)2/2μ dv

U = μn2lAI (1/2)

U/dt = μn2lA (dI/dt) I (1/2)

Part C)

U = ∫ S dv

where S = E cross H, assuming ∫ Jf dot E dv = 0

This is where I am confused. Is there an electric field in the solenoid? If so then did I not do the other parts correctly? What am I missing here...
 
Physics news on Phys.org
Not that complicated. Given inductance L, what is the formula for stored energy?

Then, calculate L per unit length.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top