Integrating with Fractions: Understanding the Solution for (x^2 - 2x)/2

omf24
Messages
2
Reaction score
0
Can someone please help me with this problem. Please see the attached image.

The integration when removing the min and max is also provided, how is the answer x2/2 - x3/6? Do we not do anything with the 1 - 1/2 part? and the +2 part? Are we only looking at (x2-2x)/2?

I appreciate the help.
 

Attachments

  • integral.JPG
    integral.JPG
    6.2 KB · Views: 431
Physics news on Phys.org
The integrand is x - x2/2.
 
-\frac{1}{2}\left(x^2- 2x+ 2\right)= -\frac{1}{2}x^2+ x- 1
Adding 1 to that gives the integrand
-\frac{1}{2}x^2+ x
as mathman says.
 
Thanks, that is exactly what I needed to know.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top