Solving Partial Derivative Equation: Finding Error & Fixing It

dimensionless
Messages
460
Reaction score
1
I'm trying to figure out this equation.

<br /> {\Psi} = Ae^{-a(bx-ct)^2}<br />

I've expanded this to

<br /> {\Psi} = Ae^{-ab^2x^2-abxct-ac^2t^2}<br />

When I try to find the derivative I get this

<br /> \left(\newcommand {\pd}[3]{ \frac{ \partial^{#3}{#1} }{ \partial {#2}^{#3} } }<br /> <br /> \pd{\Psi}{t}{}\right)_x = (-2ac^2t-abxc)Ae^{-ab^2x^2-abxct-ac^2t^2}<br />

I should get this instead

<br /> \left(\newcommand {\pd}[3]{ \frac{ \partial^{#3}{#1} }{ \partial {#2}^{#3} } }<br /> <br /> \pd{\Psi}{t}{}\right)_x = (-2abcx-2ac^2t)Ae^{-ab^2x^2-abxct-ac^2t^2}<br />

Can anyone tell me where my error is and how I can fix it?
 
Last edited:
Physics news on Phys.org
Try again in expanding
(bx-ct)^2
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top