Concepts of Eigenvectors/values

  • Thread starter Thread starter DrummingAtom
  • Start date Start date
  • Tags Tags
    Concepts
AI Thread Summary
The discussion highlights frustrations with a Differential Equations/Linear Algebra class that fails to cover essential topics like linear transformations and diagonalization, impacting students' understanding of eigenvalues and eigenvectors. A participant seeks clarification on whether switching rows in a matrix affects the calculation of eigenvectors, confirming that row operations do not change the solution space. The conversation also addresses the common occurrence of eigenvectors having rows of zeros, suggesting that this may relate to the nature of eigenvectors being able to be "stretched" along their line. Overall, the thread emphasizes the challenges of learning these concepts in a combined course format. Understanding these foundational aspects is crucial for mastering eigenvalues and eigenvectors.
DrummingAtom
Messages
657
Reaction score
2
Just a small rant to start. My DE/LA class is absolute nonsense. I am really wishing that I taken each class separate because this class is making me and many others lose the big picture. For instance, this class doesn't teach linear transformations and diagonalization both of which I keep seeing anytime I look up stuff about eigens. I've managed to learn some of these on my own but I can't spend too much time on that stuff for now.

Anyway, after I find the eigenvalues am I allowed to do any switch rows to find the eigenvectors? Or do I have to account for the switching of a row in the eigenvector? Most of the matrices that are produced from plugging in the eigenvalues have some strange configurations, usually they have a ton of zeros and not what I'm used to. Thanks for any help.
 
Last edited:
Mathematics news on Phys.org
i'm not sure what you mean by "switching the rows".

what i WILL say, is that if a matrix A models a set of linear equations, changing the order of the rows amounts to changing the order that the equations are written in, and does not change the solution space.
 
Once you have an eigenvalue, \lambda, for linear transformation, A, you find the eigenvectors by solving the equation Ax= \lambda x for x. IF you choose to use "row-reduction" to solve that equation, yes, you can use any row operations you wish to solve it.
 
Deveno said:
i'm not sure what you mean by "switching the rows".

what i WILL say, is that if a matrix A models a set of linear equations, changing the order of the rows amounts to changing the order that the equations are written in, and does not change the solution space.

Yeah that's I mean about switching the rows. That clears up that question.

Now, another question is why does every eigenvector I'm trying to find always seem to have an entire row of zeros? Is it because the eigenvector is capable of being "stretched" on it's line?
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Back
Top