Electric flux through a surface

AI Thread Summary
The discussion centers on calculating electric flux through a square surface with a point charge positioned above it. The initial assumption that the net flux would be zero is challenged, as it overlooks the nature of electric flux through a surface. Participants emphasize the need to integrate the electric field over the surface area, using the equation Φ = ∫∫ E*dA. The concept of symmetry is introduced, suggesting that the flux through each face of an enclosing cube can be equally distributed. Ultimately, Gauss' law is highlighted as a useful tool for determining the total flux through a closed surface.
Plasmosis1
Messages
17
Reaction score
0

Homework Statement


A point charge q is situated a distance d/2 above a square surface of side d as shown (see attached).
a) It cannot be determined
b) 2q/ε0d
c) q/4\piε0
d) q/\piε0d2
e) q/6ε0

Homework Equations



\Phi=qenc0=\ointE*dA

The Attempt at a Solution


Shouldn't the answer be zero because whatever enters the area also leave the area? If not I know I should use the integral of E*dA but I don't know what E would be.
 

Attachments

  • Physics1.PNG
    Physics1.PNG
    3.2 KB · Views: 734
Last edited:
Physics news on Phys.org
If the area were a thin volume you'd be correct, the net flux into the volume = 0, but flux thru a surface A = the integral over the surface of the dot-product of the electric field E and an element of surface area dA: flux = ∫∫ E*dA.


So yes, you need to integrate E*dA over the surface. dA is normal to the surface at every point on the surface.
 
You can manage without integration.
Imagine the charge is in the middle of a cube with side d.
Due to symmetry, the flux through each face of the cube is the same.
And the total flux through the cubic, closed surface can be found from Gauss' law.
 
  • Like
Likes 1 person
Nasu has come up with the right and simple way to solve this.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Back
Top