Horribly Confused With Complex Logarithms

AI Thread Summary
Complex logarithms can be confusing, particularly when applying identities like ln(z^c) = c ln(z) + 2πik. Evaluating ln(e^i) using different identities leads to inconsistent results, highlighting the complexities of multi-valued logarithms. When solving equations like 10^z = e^πi, the approach of taking the natural logarithm can yield problematic solutions due to the nature of logarithmic branches. It's important to choose the correct branch of the logarithm to avoid infinite or incorrect answers. Understanding these nuances is crucial for accurately working with complex logarithms.
MrBillyShears
Gold Member
Messages
14
Reaction score
0
I'm getting myself all confused with complex logarithms. I'll try to explain why. One identity with complex logarithms is ln(z^c)=cln(z)+2πik, with k an integer. This is, of course, a more general case of ln(e^c)=c+2πik, but it doesn't always work the same! Let's say we are evaluating ln(e^i). Using the latter identity, it is i+2πik, which is, logically, the correct answer, but using the first identity, you get iln(e)+2πik, which is i(1+2πin)+2πik=i+2πn+2πik...! What! Obviously e^(i+2π) doesn't equal e^i. Another example, ln(1)=ln(e^2πi)=2πi(1+2πin)+2πik=2πi+4π^2n+2 πik

And, I have another problem. I have this when I try to solve an equation 10^z=e^πi, so I take ln of both sides zln(10)=πi+2πik and then z=(πi+2πik)/ln(10), where ln(10) in the denominator is infinite answered and will give solutions that don't work! I'm clearly doing something wrong, so someone please help me!
 
Mathematics news on Phys.org
One identity with complex logarithms is ln(z^c)=cln(z)+2πik, with k an integer.
If this identity allows complex c (check that!), then you have to be more careful which branch of the logarithm you choose on the right side.

where ln(10) in the denominator is infinite answered and will give solutions that don't work!
A multi-valued log is not the exact inverse function of 10^z for reasonable definitions of 10^z. If you use the same freedom to define 10^z as exp(ln(10)z) with a multi-valued ln(10) then they should work.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top