Exactly correct!
StatusX said:
\int_0^{\infty} \frac{x^3 dx}{e^x-1} = \int_0^{\infty} \frac{x^3 e^{-x} dx}{1-e^{-x}}
= \int_0^{\infty} x^3 e^{-x} (1+e^{-x}+e^{-2x}+...)dx
This can be turned into a sum over the inverse fourth powers of the natural numbers, whose value is, I think, pi^4/90.
Exactly correct! In general: for all real y>1, (or complex y with real part greater than 1,) let
I_y=\int_0^{\infty} \frac{x^{y-1} dx}{e^x-1} = \int_0^{\infty} x^{y-1} e^{-x}\frac{1}{1-e^{-x}}dx,
expanding the fraction as a geometric series gives
\frac{1}{1-e^{-x}}=\sum_{k=0}^{\infty} e^{-kx}
and hence
I_y= \int_0^{\infty} x^{y-1}e^{-x}\sum_{k=0}^{\infty} e^{-kx}dx = \int_0^{\infty} \sum_{k=1}^{\infty} e^{-kx}x^{y-1}dx = \sum_{k=1}^{\infty} \int_0^{\infty} e^{-kx}x^{y-1} dx
substitute u=kx so that x=\frac{u}{k}, and hence dx=\frac{du}{k} to get
I_y=\sum_{k=1}^{\infty} \int_0^{\infty} e^{-u}\left( \frac{u}{k} \right) ^{y-1} \frac{du}{k} = \sum_{k=1}^{\infty} \left( \frac{1}{k} \right) ^{y} \int_0^{\infty}e^{-u}u^{y-1}du=\zeta (y)\Gamma (y)
By the way, I coppied this proof from
mathworld.
In particular, we have \int_0^{\infty} \frac{x^3 dx}{e^x-1} =\int_0^{\infty} \frac{x^{4-1} dx}{e^x-1} = \zeta (4)\Gamma (4) = \frac{\pi ^4}{90}\cdot 3! = \frac{\pi ^4}{15}