- 1,753
- 143
Find the 1st derivative using "the long way" method. Show all the algebra.
f(x)=x^2+\frac{4}{x}
<br /> \begin{array}{l}<br /> f'(x) = \mathop {\lim }\limits_{h \to 0} \frac{{f(x + h) - f(x)}}{h} = \\ <br /> \\ <br /> \mathop {\lim }\limits_{h \to 0} \frac{{\left( {x + h} \right)^2 + 4\left( {x + h} \right)^{ - 1} - \left( {x^2 + 4x^{ - 1} } \right)}}{h} = \\ <br /> \\ <br /> \mathop {\lim }\limits_{h \to 0} \frac{{x^2 + 2xh + h^2 + 4\left( {x + h} \right)^{ - 1} - x^2 - 4x^{ - 1} }}{h} \\ <br /> \end{array}<br /> <br />
Here's where I get stuck. I don't know what to do with
<br /> {\left( {x + h} \right)^{ - 1} }<br />
I forget the algebra for this step. Am I even going in the right direction to bring this term up from the denominator?
f(x)=x^2+\frac{4}{x}
<br /> \begin{array}{l}<br /> f'(x) = \mathop {\lim }\limits_{h \to 0} \frac{{f(x + h) - f(x)}}{h} = \\ <br /> \\ <br /> \mathop {\lim }\limits_{h \to 0} \frac{{\left( {x + h} \right)^2 + 4\left( {x + h} \right)^{ - 1} - \left( {x^2 + 4x^{ - 1} } \right)}}{h} = \\ <br /> \\ <br /> \mathop {\lim }\limits_{h \to 0} \frac{{x^2 + 2xh + h^2 + 4\left( {x + h} \right)^{ - 1} - x^2 - 4x^{ - 1} }}{h} \\ <br /> \end{array}<br /> <br />
Here's where I get stuck. I don't know what to do with
<br /> {\left( {x + h} \right)^{ - 1} }<br />
I forget the algebra for this step. Am I even going in the right direction to bring this term up from the denominator?