How Do You Solve Heat Conduction in a Sphere with Fixed Boundary Temperature?

genius2687
Messages
11
Reaction score
0
A solid sphere of radius a is immersed in a vat of fluid at a temperature T_0. Heat is conducted into the sphere according to

dT/dt = D(d^2T/dr^2)
(d-> partial derivative btw)

If the temperature at the boundary is fixed at T_0 and the initial temperature of the sphere is T_1, find the temperature within the sphere as a function of time.

My reasoning

Ok. Here's my reasoning. Use a solution of the form T=X(t)R(r), and plug into the above equation to get

R''/R=X/(DX')=-k^2.

I get X(t) = C*[exp(-t/(D*k^2))]. (k^2>0 for convergence)

Then I have R'' +k^2*R = 0

so R= Acos(kr) + Bsin(kr), since k^2>0.

The Problem

Assuming that the above steps are right, we could set the boundary conditions and have Acos(ka)+Bsin(ka)=T_0. That only eliminates one variable, either A or B. I don't know where to go from there however. Should this be like a Fourier series or something?
 
Physics news on Phys.org
The Laplacian in spherical coords is not d^2T/dr^2.
It is \frac{1}{r}\left[\partial_r^2(rT)\right]
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top