Legendre poynomials proof question.Help

  • Thread starter Thread starter aligator123
  • Start date Start date
  • Tags Tags
    Legendre Proof
aligator123
Messages
35
Reaction score
0
Hello everyone i had some questions about legendre polynomials. I have solved most of them but i had just two not answered question. I tried to solve this problem by rodriguez rule but it was really hard for me. Could anyone help me or give me some hints for this question?

http://img149.imageshack.us/img149/1314/mathjr1.th.jpg
 
Last edited by a moderator:
Physics news on Phys.org
Please don't double post.
Continue your discussion in your other post.
 
Last edited:
ok i will look for help in physics.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top