Proving a = a^-1 implies a^2 = e in group theory

mehrts
Messages
15
Reaction score
0
Let G be a group. Let 'a' be an element of G. Let e be the identity of G Prove that if a = a^-1 then a^2= e.

Is the proof below correct ?
Suppose a = a^-1. Then

a^2 = aa = a(a^-1) = e.
 
Physics news on Phys.org
yeah, if a is it's own inverse then a^2 is e. your proof looks fine to me.
 
Thxs. He he he :!)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top