How Do You Prove the Angular Velocity in Rigid Body Motion?

ohsoconfused
Messages
1
Reaction score
0

Homework Statement


Consider a thin homogeneous plate with principal momenta of inertia
I1 along axis x1,
I2>I1 along x2,
I3 = I1 + I2 along x3

Let the origins of the x and x' systems coincide at the center of mass of the plate. At time t=0, the plate is set rotatint in a force-free manner with angular velocity Q about an axis inclined at an angle of a from the plane of the plate and perpendicular to the x2-axis. If I1/I2 = cos2a, show at time t the angular velocity about the x2-axis is:

w2(t) = Qcosa*tanh(Qtsina).

The Attempt at a Solution


I know that the kinetic energy and the square of the angular momentum are constant, but I'm not positive how to calculate them with the initial conditions given. Past that, the Euler equations simplify somewhat...

(for simplicity's sake, let [x] = the first time derivative of x)

[w2] = w3w1
[w1] = -w2w3
[w3] = w1w2*(I1-I2)/(I1+I2) = w1w2*(cos2a-1)/(cos2q+1)

I'm having trouble seeing how such a bizarre function can even arise, but I think my first problem is calculating KE and L squared in terms of the initial conditions, which I'm blank on.

Anybody help? :frown:
 
Physics news on Phys.org
ohsoconfused said:

Homework Statement


Consider a thin homogeneous plate with principal momenta of inertia
I1 along axis x1,
I2>I1 along x2,
I3 = I1 + I2 along x3

Let the origins of the x and x' systems coincide at the center of mass of the plate. At time t=0, the plate is set rotatint in a force-free manner with angular velocity Q about an axis inclined at an angle of a from the plane of the plate and perpendicular to the x2-axis. If I1/I2 = cos2a, show at time t the angular velocity about the x2-axis is:

w2(t) = Qcosa*tanh(Qtsina).

The Attempt at a Solution


I know that the kinetic energy and the square of the angular momentum are constant, but I'm not positive how to calculate them with the initial conditions given.

The things I put in red give you a complete geometrical description of the rotation vector at t=0, expressed in the frame (x1,x2,x3) fixed to the rotating body (which is exactly what you need for Euler's equations).
Draw it or something: you'll find the initial values for the 3 components (for instance, you already know that the second component is 0, given that the rotation vector is perpendicular to it). Once you know those, you can fill it in in the expressions for E and M^2.

Past that, the Euler equations simplify somewhat...

(for simplicity's sake, let [x] = the first time derivative of x)

[w2] = w3w1
[w1] = -w2w3
[w3] = w1w2*(I1-I2)/(I1+I2) = w1w2*(cos2a-1)/(cos2q+1)

I'm having trouble seeing how such a bizarre function can even arise, but I think my first problem is calculating KE and L squared in terms of the initial conditions, which I'm blank on.

Suggestion:
If I understand the problem statement well, they GIVE you the solution and you simply have to show that it is correct - you don't need to derive it. So use the solution they give you, to show that you obtain a complete solution for w1 and w3 (derivable from the conservation of M2 and E and given w2), which satisfy the Euler equation.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top