mbrmbrg
- 485
- 2
[SOLVED] Linear Algebra: given adj(A) find A
If adj\mathbb A = \left(\begin{array}{ccc}1&0&1\\1&-1&0\\0&2&1\end{array}\right), find A. Briefly justify your algorithm.
adj\mathbb A=(det\mathbb A)(\mathbb A^{-1})
adj\mathbb A=(det\mathbb A)(\mathbb A^{-1})
invert both sides to get:
(adj\mathbb A)^{-1} = [(det\mathbb A)(\mathbb A^{-1})]^{-1}
(adj\mathbb A)^{-1} = (\mathbb A^{-1})^{-1}(det\mathbb A)^{-1}
(adj\mathbb A)^{-1} = (\mathbb A)(\frac{1}{det\mathbb A})
\mathbb A = (det\mathbb A)(adj\mathbb A)^{-1}
My, isn't that nice.
I computed (adj\mathbb A)^{-1}, and found it to be
\left(\begin{array}{ccc}-1&2&1\\-1&1&1\\2&-2&-1\end{array}\right)
But I have no clue how to find detA, so I'm stuck with one equation:
\mathbb A = (det\mathbb A)(adj\mathbb A)^{-1}
and two unknowns:
\mathbb A and det\mathbb A
Homework Statement
If adj\mathbb A = \left(\begin{array}{ccc}1&0&1\\1&-1&0\\0&2&1\end{array}\right), find A. Briefly justify your algorithm.
Homework Equations
adj\mathbb A=(det\mathbb A)(\mathbb A^{-1})
The Attempt at a Solution
adj\mathbb A=(det\mathbb A)(\mathbb A^{-1})
invert both sides to get:
(adj\mathbb A)^{-1} = [(det\mathbb A)(\mathbb A^{-1})]^{-1}
(adj\mathbb A)^{-1} = (\mathbb A^{-1})^{-1}(det\mathbb A)^{-1}
(adj\mathbb A)^{-1} = (\mathbb A)(\frac{1}{det\mathbb A})
\mathbb A = (det\mathbb A)(adj\mathbb A)^{-1}
My, isn't that nice.
I computed (adj\mathbb A)^{-1}, and found it to be
\left(\begin{array}{ccc}-1&2&1\\-1&1&1\\2&-2&-1\end{array}\right)
But I have no clue how to find detA, so I'm stuck with one equation:
\mathbb A = (det\mathbb A)(adj\mathbb A)^{-1}
and two unknowns:
\mathbb A and det\mathbb A
Last edited: