Lorentz Transformation via Rotation

  • Thread starter Thread starter snoopies622
  • Start date Start date
  • Tags Tags
    Lorentz Rotation
snoopies622
Messages
852
Reaction score
29
To me the easiest way to arrive at the Lorentz transformation is by rotation, using one dimension for space and the other for the product of time, the speed of light and the square root of minus one. This seems justifiable to me if one starts with the premise that ds^2 =ds'^2. I can see how if one assumes that the speed of light is the same in both frames of reference then ds^2=0 implies ds'^2=0 (and vice versa). But I don't know why ds^2=ds'^2 in general. Must one find the Lorentz transformation in some other way in order to arrive at this equality?
 
Physics news on Phys.org
snoopies622 said:
To me the easiest way to arrive at the Lorentz transformation is by rotation, using one dimension for space and the other for the product of time, the speed of light and the square root of minus one. This seems justifiable to me if one starts with the premise that ds^2 =ds'^2. I can see how if one assumes that the speed of light is the same in both frames of reference then ds^2=0 implies ds'^2=0 (and vice versa). But I don't know why ds^2=ds'^2 in general. Must one find the Lorentz transformation in some other way in order to arrive at this equality?
Whatever works easiest for you!
But notice that this only works for flat spacetimes.
 
ict was popular 100 years ago. It has lost fashion, because it can't be extended to GR, and it complicates relativistic QM, with two different i's.
 
Thanks to you both. I didn't realize that ict wouldn't work for non-flat spacetimes, but I guess it would yield a complex ds^2 (and who wants that?).
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top