How does my book go from this step to the next (trig)

  • Thread starter Thread starter frasifrasi
  • Start date Start date
  • Tags Tags
    Book Trig
frasifrasi
Messages
276
Reaction score
0
OK, in an example, we are given:

"T(θ)= 2 cos^2 (θ) +sin^2 (θ) − sin (θ) + 3
=cos^2 (θ) − sin θ + 4.
Then Tθ(θ)= −2 cos θ sin θ − cos θ =
−cos θ(2 sinθ + 1)"

can anyone explain what happened from step 1 to 2--i am completely lost?

Thanks.
 
Physics news on Phys.org
frasifrasi said:
OK, in an example, we are given:

"T(θ)= 2 cos^2 (θ) +sin^2 (θ) − sin (θ) + 3
=cos^2 (θ) − sin θ + 4.
Then Tθ(θ)= −2 cos θ sin θ − cos θ =
−cos θ(2 sinθ + 1)"

can anyone explain what happened from step 1 to 2--i am completely lost?

\sin^2 \theta + \cos^2 \theta = 1
so
\sin^2 \theta = 1 - \cos^2 \theta
Now, substitute in for step 1 and simplify.
 
Geez, I am embarassed.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top