Proof - the derivative of a scalar multiple

hayesk85
Messages
7
Reaction score
0

Homework Statement



I am confused how the scalar multiple is divided out of the proof of this rule without taking an h with it in the denominator, which would get very tiny meaning the entire thing would go to infinity or negative infinity or zero, you can't tell.

Start with: f(x) = k g(x) End: f'(x) = k g'(x)



Homework Equations



This is the proof I was given:

f'(x) = lim(h->0) [k g(x+h) - k g(x)] / h

f'(x) = lim(h->0) [k {g(x+h) - g(x)}] /h

Next step I do not agree with: (Never mind -this is legal, right?)
f'(x) = lim(h->0) k [{g(x+h) - g(x)}/h]

f'(x) = k lim(h->0) [{g(x+h) - g(x)}/h]

f'(x) = k g'(x)

The Attempt at a Solution



This is what I think would happen at the step I disagree with:

f'(x) = lim(h->0) k/h * [{g(x+h) - g(x)}/h]

f'(x) = lim(h->0) k/h * lim(h->0) [{g(x+h) - g(x)}/h]

f'(x) = ? * g'(x)
 
Last edited:
Physics news on Phys.org
(k/h)*(g(x+h)-g(x))/h=(k*g(x+h)-k*g(x))/h^2. That's not equal to (k*g(x+h)-k*g(x))/h. Why would you do that?
 
Check out the presentation of the formal definition of "limit" (the "delta-epsilon" formality):
http://mathforum.org/library/drmath/view/53403.html"

That doesn't answer your question, I know. But it's an unusually interesting discussion of what is really meant by "limit".

jf
 
Last edited by a moderator:
hayesk85 said:

Homework Statement



I am confused how the scalar multiple is divided out of the proof of this rule without taking an h with it in the denominator, which would get very tiny meaning the entire thing would go to infinity or negative infinity or zero, you can't tell.

Start with: f(x) = k g(x) End: f'(x) = k g'(x)



Homework Equations



This is the proof I was given:

f'(x) = lim(h->0) [k g(x+h) - k g(x)] / h

f'(x) = lim(h->0) [k {g(x+h) - g(x)}] /h

Next step I do not agree with: (Never mind -this is legal, right?)
f'(x) = lim(h->0) k [{g(x+h) - g(x)}/h]

f'(x) = k lim(h->0) [{g(x+h) - g(x)}/h]

f'(x) = k g'(x)

The Attempt at a Solution



This is what I think would happen at the step I disagree with:

f'(x) = lim(h->0) k/h * [{g(x+h) - g(x)}/h]
That's just bad algebra. You now have two "h" s in the denominators.

f'(x) = lim(h->0) k/h * lim(h->0) [{g(x+h) - g(x)}/h]f'(x) = ? * g'(x)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top