What is the integral of ∫ e^ (x^2 +sinx) dx ?

  • Thread starter Thread starter eric_o6
  • Start date Start date
  • Tags Tags
    Dx Integral
eric_o6
Messages
1
Reaction score
0
What is the integral of ∫ e^ (x^2 +sinx) dx


I got the answer e^(x^2+sinx)/(2x+cosx) but I know that is wrong. I don't understand how you treat the + part for an e^() problem.
 
Last edited:
Physics news on Phys.org
There is presumably no closed form solution involving elementary functions.

Mathematica agrees: http://integrals.wolfram.com/index.jsp?expr=e^(x^2+%2B+sin(x))&random=false
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top