Parametric Representation for Sphere Between Planes z = 1 & z = -1?

joemama69
Messages
390
Reaction score
0

Homework Statement



Determine a parametric representation for the part of the sphere x2 + y2 + z2 = 4 that lies between the planes z = 1 & z = -1.

Homework Equations





The Attempt at a Solution



We never learned spherical coordinates in class so I am not sure if I am using this correctly.

radius = 2,

x = 2sin(\phi)cos(\theta)

y = 2cos(\phi)sin(\theta)

z = 2cos(\phi) where -1 \leq z \leq 1
 
Physics news on Phys.org
oops that's a typo, should y be


y = 2sin\phisin\theta
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top