Rasalhague
- 1,383
- 2
Is the following correct, as far as it goes?
Suppose I have a vector space V and I'm making a transformation from one coordinate system, "the old system", with coordinates xi, to another, "the new system", with coordinates yi. Where i is an index that runs from 1 to n.
Let ei denote the coordinate basis for the old system, and e'i the coordinate basis for the new system.
I can define matrices BL and BR (where subscript L and R stand for "left" and "right") such that
B_L \begin{bmatrix} \vdots \\ \textbf{e}_i \\ \vdots \end{bmatrix} = \begin{bmatrix} \vdots \\ \textbf{e}'_i \\ \vdots \end{bmatrix}
\begin{bmatrix} \cdots & \textbf{e}_i & \cdots \end{bmatrix} B_R = \begin{bmatrix} \cdots & \textbf{e}'_i & \cdots \end{bmatrix}
and likewise matrices CL and CR, replacing the basis vectors in the above definitions with components of vectors in (the underlying set of) V.
And
C_L = \left ( C_R \right )^T = \begin{bmatrix}<br /> \frac{\partial y^1}{\partial x^1} & \cdots & \frac{\partial y^1}{\partial x^n} \\ <br /> \vdots & \ddots & \vdots \\ <br /> \frac{\partial y^n}{\partial x^1} & \cdots & \frac{\partial y^n}{\partial x^n} <br /> \end{bmatrix}
and
\left ( C_L \right )^{-1} = B_L = \left ( B_R \right )^T = \begin{bmatrix}<br /> \frac{\partial x^1}{\partial y^1} & \cdots & \frac{\partial x^1}{\partial y^n} \\ <br /> \vdots & \ddots & \vdots \\ <br /> \frac{\partial x^n}{\partial y^1} & \cdots & \frac{\partial x^n}{\partial y^n} <br /> \end{bmatrix}.
And some people (e.g. Wolfram Mathworld, Berkley & Blanchard: Calculus) define the Jacobian matrix of this transformation as
J \equiv C_L \equiv \frac{\partial \left ( y^1,...,y^n \right )}{\partial \left ( x^1,...,x^n \right )}
while others (e.g. Snider & Davis: Vector Analysis) define it as
J \equiv \left ( C_L \right )^{-1} \equiv \frac{\partial \left ( x^1,...,x^n \right )}{\partial \left ( y^1,...,y^n \right )}.
Suppose I have a vector space V and I'm making a transformation from one coordinate system, "the old system", with coordinates xi, to another, "the new system", with coordinates yi. Where i is an index that runs from 1 to n.
Let ei denote the coordinate basis for the old system, and e'i the coordinate basis for the new system.
I can define matrices BL and BR (where subscript L and R stand for "left" and "right") such that
B_L \begin{bmatrix} \vdots \\ \textbf{e}_i \\ \vdots \end{bmatrix} = \begin{bmatrix} \vdots \\ \textbf{e}'_i \\ \vdots \end{bmatrix}
\begin{bmatrix} \cdots & \textbf{e}_i & \cdots \end{bmatrix} B_R = \begin{bmatrix} \cdots & \textbf{e}'_i & \cdots \end{bmatrix}
and likewise matrices CL and CR, replacing the basis vectors in the above definitions with components of vectors in (the underlying set of) V.
And
C_L = \left ( C_R \right )^T = \begin{bmatrix}<br /> \frac{\partial y^1}{\partial x^1} & \cdots & \frac{\partial y^1}{\partial x^n} \\ <br /> \vdots & \ddots & \vdots \\ <br /> \frac{\partial y^n}{\partial x^1} & \cdots & \frac{\partial y^n}{\partial x^n} <br /> \end{bmatrix}
and
\left ( C_L \right )^{-1} = B_L = \left ( B_R \right )^T = \begin{bmatrix}<br /> \frac{\partial x^1}{\partial y^1} & \cdots & \frac{\partial x^1}{\partial y^n} \\ <br /> \vdots & \ddots & \vdots \\ <br /> \frac{\partial x^n}{\partial y^1} & \cdots & \frac{\partial x^n}{\partial y^n} <br /> \end{bmatrix}.
And some people (e.g. Wolfram Mathworld, Berkley & Blanchard: Calculus) define the Jacobian matrix of this transformation as
J \equiv C_L \equiv \frac{\partial \left ( y^1,...,y^n \right )}{\partial \left ( x^1,...,x^n \right )}
while others (e.g. Snider & Davis: Vector Analysis) define it as
J \equiv \left ( C_L \right )^{-1} \equiv \frac{\partial \left ( x^1,...,x^n \right )}{\partial \left ( y^1,...,y^n \right )}.
Last edited: