Basis of Orthogonal Complement

  • Thread starter Thread starter georgetown13
  • Start date Start date
  • Tags Tags
    Basis Orthogonal
georgetown13
Messages
7
Reaction score
0
Let S be the subspace of R^3 spanned by x=(1,-1,1)^T.

Find a basis for the orthogonal complement of S.

I don't even know where to start... I would appreciate your help!
 
Physics news on Phys.org
If (a,b,c)^T is a general vector in R^3 then it's orthogonal to (1,-1,1)^T if the dot product is zero. What conditions does that give you on a, b and c?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Replies
2
Views
1K
Replies
5
Views
5K
Replies
3
Views
2K
Replies
7
Views
1K
Replies
16
Views
3K
Replies
2
Views
2K
Back
Top