Please help is solving the non homogeneous heat problem.

  • Thread starter Thread starter yungman
  • Start date Start date
  • Tags Tags
    Heat Homogeneous
yungman
Messages
5,741
Reaction score
294

Homework Statement


Find solution of a nonhomogeneous heat problem:

\frac{\partial U}{\partial t} = c^2( \frac{\partial^2 U}{\partial r^2} + \frac{1}{r}\frac{\partial U}{\partial r} + \frac{1}{r^2}\frac{\partial^2 U}{\partial \theta^2} + g(r,\theta,t)

With boundary condition: U(a,\theta, t) = 0

Initial condition: U(r,\theta,0) = f(r,\theta)



2. The attempt at a solution 1

The associate homogeneous equation is:

U(r,\theta,t)=R\Theta T \;\;\;\;\Rightarrow\;\;\;\; R\Theta T' + c^2(R''\Theta T + \frac{1}{r}R'\Theta T + \frac{1}{r^2}R\Theta'' T)= g(r,\theta,t)

Where U_c(r,\theta,t) = \sum_{m=0}^{\infty}\sum_{n=1}^{\infty}J_m(\lambda_{mn}r)[A_{mn}cos(m\theta) + B_{mn} sin(m\theta)]e^{-c^2\lambda^2_{mn}t}

I don't know how to solve for particular solution.
 
Last edited:
Physics news on Phys.org
Anyone please? I just want some guidance how to approach this problem.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top