Simple integral leads to Kronecker delta term?

the_dialogue
Messages
77
Reaction score
0

Homework Statement


<br /> <br /> \int_{0}^{b} \int_{0}^{2\pi} C_{k,m}(r)^2 \left{\begin{array}{cc}cos(m\theta)^2\\sin(m\theta)^2 \end{array}\right} r dr d\theta<br /> <br />


Homework Equations


See above


The Attempt at a Solution


Ignoring the 'r' integral for a second, the solution that I see written here is:
\pi(1+\delta_{0,m}(\int_{0}^{b} C_{k,m}(r)^2 r dr)
where \delta is Kronecker delta.

Where did the tex]\pi(1+\delta_(0,m)}[/tex] come from?

I suppose my confusion may strand from misunderstanding what the bracketed term \left{\begin{array}{cc}cos(m\theta)^2\\sin(m\theta)^2 \end{array}\right} means. What is this notation? Instinct says column vector, but that of course doesn't seem to be the case.

Thank you for any help!
 
Physics news on Phys.org
The correct formula is more like

<br /> \pi(1+\delta_{0,m} ) (\int_{0}^{b} C_{k,m}(r)^2 r dr)<br />

The factor in front is the result of doing the trig integration:

\int_0^{2\pi} \cos^2(n\phi) d\phi = \int_0^{2\pi} \sin^2(n\phi) d\phi =\pi, ~\text{for}~n=1,2,\ldots,
\int_0^{2\pi} \cos^2(0\phi) d\phi = 2\pi.
 
fzero said:
The correct formula is more like

<br /> \pi(1+\delta_{0,m} ) (\int_{0}^{b} C_{k,m}(r)^2 r dr)<br />

The factor in front is the result of doing the trig integration:

\int_0^{2\pi} \cos^2(n\phi) d\phi = \int_0^{2\pi} \sin^2(n\phi) d\phi =\pi, ~\text{for}~n=1,2,\ldots,
\int_0^{2\pi} \cos^2(0\phi) d\phi = 2\pi.

Of course!

My mistake. Thanks fzero for the prompt response.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top