Kinetic energy in parabolic coordinates

AI Thread Summary
In parabolic coordinates, the kinetic energy is expressed as T=m/8(α+β)(ẋ²/α+ẏ²/β). The coordinates are defined by α=r+x and β=r-x, where r is the radial distance. The discussion highlights the challenge of deriving the kinetic energy expression from these new coordinates, contrasting it with simpler coordinate systems like spherical or cylindrical. A key insight is to express x and y in terms of α and β, which facilitates the calculation of kinetic energy. This approach ultimately leads to the ability to formulate the equations of motion.
QuArK21343
Messages
47
Reaction score
0

Homework Statement



Prove that in parabolic coordinates \alpha,\beta the kinetic energy is T=m/8(\alpha+\beta)(\dot\alpha^2/\alpha+\dot\beta^2/\beta)

Homework Equations



Parabolic coordinates are defined as follows: \alpha=r+x, \beta=r-x with r=\sqrt{x^2+y^2}

The Attempt at a Solution



I don't know how to proceed in this situation: in simpler case (spherical or cylindrical coordinates) I write down the three components of velocity using geometrical intuition (e.g. v_\rho=\dot \rho, v_\phi=\rho \dot\phi,v_z=\dot z, because I see they are right...). What if I get only the definition of the new coordinates?
 
Physics news on Phys.org
Welcome to physics forums.

QuArK21343 said:

Homework Statement



Prove that in parabolic coordinates \alpha,\beta the kinetic energy is T=m/8(\alpha+\beta)(\dot\alpha^2/\alpha+\dot\beta^2/\beta)

Homework Equations



Parabolic coordinates are defined as follows: \alpha=r+x, \beta=r-x with r=\sqrt{x^2+y^2}

The Attempt at a Solution



I don't know how to proceed in this situation: in simpler case (spherical or cylindrical coordinates) I write down the three components of velocity using geometrical intuition (e.g. v_\rho=\dot \rho, v_\phi=\rho \dot\phi,v_z=\dot z, because I see they are right...). What if I get only the definition of the new coordinates?

I think the key here is to get x and y in terms of \alpha, \beta. And you hopefully already know how to express the kinetic energy in x, y coordinates, right?
 
That's right! I check explicitly and it works. Now that I have the kinetic energy, it will be doable to write down the equations of motion. Thank you.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top