Linear Transformation T : M22 & Finding Ker T Dimension

  • Thread starter Thread starter Nope
  • Start date Start date
Nope
Messages
100
Reaction score
0
Quick please! T(A) = Tr(A)

Homework Statement


Let T : M22 define as T(A) = Tr(A). Show that T is a linear transformation
and find the dimension of ker T.


Homework Equations





The Attempt at a Solution



what is Tr(A)?
is it trace(A), or rT(A) , r is a real number?
 
Physics news on Phys.org


It's most likely the trace.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top