Logarithmic function as an integral

JMR_2413
Messages
2
Reaction score
0

Homework Statement


I'm attempting to prove the rules for the logarithmic function using the Integral definition: Log(x)=[1,x]∫1/t dt. I think I am alright with the product rule but I'm struggling with the quotient rule: i.e. Log(a/b)=Log(a)-Log(b). I believe that I'm having trouble breaking up the Integral correctly. Any help would be appreciated!

Homework Equations





The Attempt at a Solution

 
Physics news on Phys.org
If you can show the product rule, then the quotient rule will follow the same logic, with an appropriate assumption about which of a or a/b is larger. Alternatively, use substitution to show that \log(1/b) = - \log b so that you can combine this with the product rule.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top