D.E. Boundary Value Problem: Finished the work, seem to get wrong ans

Jeff12341234
Messages
179
Reaction score
0
2cxoHzD.jpg
 
Physics news on Phys.org
I get what you have until you say "solve sys of eq for C1 & C2" but do NOT get the values for C1 and C2 that you do. Unfortunately, you don't show how you solved the equations.
 
2pc4ky6.jpg
 
There's the work. In addition, my Ti-nSpire CAS also solves it and gets that answer.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top