Calculating the Inverse of Juggling Sequences: A Mathematical Perspective

  • Thread starter Thread starter Biosyn
  • Start date Start date
  • Tags Tags
    Mathematics
Biosyn
Messages
114
Reaction score
0

Homework Statement



Has anyone here read The Mathematics of Juggling by Burkard Polster? I am having a hard time understanding how the inverse of a juggling sequence is calculated on page 27.

For example, the table on the page has 7 rows, and in the fourth row, I'm not sure if that symbol means the inverse of the permutation of the sequence? Or how it is calculated.



kvfgmsQ.png
 
Physics news on Phys.org
Please use standard format of PF.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top