Determine force angles so that acceleration is least

AI Thread Summary
To minimize the acceleration of a 12kg particle being pulled by three ropes, the forces F2 and F3 must be oriented to counterbalance F1 effectively. The initial assumption of zero acceleration simplifies calculations, but the goal is to find angles that yield the least acceleration rather than zero. For parts (a) and (b), positioning F2 and F3 in opposite directions to F1 results in minimal force on the x-axis. In part (c), equal magnitudes of F2 and F3 allow for angle adjustments that can cancel F1, achieving zero acceleration. The discussion emphasizes the importance of balancing forces and considering both x and y components for optimal results.
MrMoose
Messages
23
Reaction score
0

Homework Statement



Figure below is an overhead view of a 12kg particle that is to be pulled by three ropes. One force (F1, with magnitude 50N) is indicated. Orient the other two forces F2 and F3 so that the magnitude of the resulting acceleration of the particle is least, and find that magnitude if

(a) F2 = 30N, F3 = 20N
(b) F2 = 30N, F3 = 10N
(c) F2 = F3 = 30N.

Figure: 0----->F1

Homework Equations



Ftx = F1 + F2x + F3x = ma

a = (F1 + F2x + F3x) / m

F2x = F2 * cos(θ)

F3x = F3 * cos(θ)

The Attempt at a Solution



Initially, I said to myself, "well the least the acceleration can be is zero" so I assumed a = 0, Ftx = 0 and it follows that F1 = -F2x - F3x. Therefore:

F1 = -F2 * cos(θ) - F3 * cos (θ)

Solving for θ;

θ = Arcos[F1 / (-F2x - F3x)]

This gives you the angle of F2 and F3 and you've already made the assumption that a = 0

This worked out for parts (a) and (c) of the problem, but it wasn't until I dug into part (b) that I saw a few flaws in my logic:

1) The problem doesn't say that acceleration is zero, it says to find the angle for the forces so that the acceleration is least. The only problem is, how do I set up my formula so that mathematically, the difference between the sum (F2x + F3x) and F1 is as small as possible?

2) My final formula for θ assumes that both F2 and F3 have the same direction (in other words, θ2 = θ3), which may not be true. But if I introduce θ2 and θ3 into my equations, they become very difficult to solve.

Thanks in advance, MrMoose
 
Physics news on Phys.org
Remember that your acceleration is in TWO directions, the x and y directions. Thus,the magnitude of the acceleration is the "hypotenuse" of the "acceleration triangle".

Let us take set up the problem:

We have:
F_1+F_2cos(a)+F_3cos(b)=ma_x
F_2sin(a)+F_3sin(b)=ma_y

We now square both equations, sum them together, in order to find the equation for the squared magnitude of the acceleration:
We gain (remember sin^2t+cos^2t=1 for all t!):
F_1^2+F_2^2+F_3^2+2F_2F_3(cos(a)cos(b)+sin(a)sin(b))+2F1(F_2cos(a)+F_3cos(b))=m^2(a_x^2+a_y^2)
-------------------------------
Now, this problem IS solvable, using partial derivatives, but I do not think that was the intention.
Rather, I believe either you are the book has left out the critical information that a_y=0!Am I correct about that?
 
Okay, I made this too difficult.
In a) and b), the answers must necessarily be to place the two other vectors in opposite direction to F_1

But, in c), no acceleration in y-direction yields the condition:
30sin(v_2)+30sin(v_3)=0, meaning v_2=-v_3

Insert these values in the x-equation
 
Yup, now I see what you did. Conceptually, you ask yourself, "how can I make the total force, Ft, as small as possible?" For (a) and (b), the sum of the forces f2 + f3 < f1. They will always produce the smallest Ft on the -x axis. However, in (c), f2 + f3 < f1, and you know that the x components of f2 and f3 will decrease as their angles increase. Now you have an opportunity to change the angles of f2 and f3 so their X components cancel out f1, yielding the smallest Ft, which is zero. In that case, I can use my assumptions from the original attempt (especially because f2 = f3 and you know θ2 = θ3). Thanks!
 
Actually, v_2=-v_3, but it doesn't matter for the even cosine functions.
If I did this right, you ought to get the equation cos(v_2)=-5/6, for zero acceleration in x-direction as well.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Back
Top