Does the Derivative of the Integral of Tan(x) Consider Cos(x) Sign Changes?

MathewsMD
Messages
430
Reaction score
7
∫tan(x) dx = -ln lcos(x)l + C = f(x)

So is f'(x) = -sin(x)/lcos(x)l ? When taking the derivative, do we only consider f'(x) to only exist on the intervals where cos(x) > 0 instead?
 
Physics news on Phys.org
MathewsMD said:
∫tan(x) dx = -ln lcos(x)l + C = f(x)

So is f'(x) = -sin(x)/lcos(x)l ? When taking the derivative, do we only consider f'(x) to only exist on the intervals where cos(x) > 0 instead?

No, the derivative of log(|y(x)|) is the derivative of log(y(x)) if y(x)>0 and it's the derivative of log(-y(x)) if y(x)<0. Can you show that they are both (1/y(x))*y'(x). Not (1/|y(x)|)*y'(x)?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top